Background: Isolating the effects of deterministic variables (e.g., physicochemical conditions) on soil microbial communities from those of neutral processes (e.g., dispersal) remains a major challenge in microbial ecology. In this study, we disturbed soil microbial communities of two McMurdo Dry Valleys of Antarctica exhibiting distinct microbial biogeographic patterns, both devoid of aboveground biota and different in macro- and micro-physicochemical conditions. We modified the availability of water, nitrogen, carbon, copper ions, and sodium chloride salts in a laboratory-based experiment and monitored the microbial communities for up to two months. Our aim was to mimic a likely scenario in the near future, in which similar selective pressures will be applied to both valleys. We hypothesized that, given their unique microbial communities, the two valleys would select for different microbial populations when subjected to the same disturbances.

Results: The two soil microbial communities, subjected to the same disturbances, did not respond similarly as reflected in both 16S rRNA genes and transcripts. Turnover of the two microbial communities showed a contrasting response to the same environmental disturbances and revealed different potentials for adaptation to change. These results suggest that the heterogeneity between these microbial communities, reflected in their strong biogeographic patterns, was maintained even when subjected to the same selective pressure and that the 'rare biosphere', at least in these samples, were deeply divergent and did not act as a reservoir for microbiota that enabled convergent responses to change in environmental conditions.

Conclusions: Our findings strongly support the occurrence of endemic microbial communities that show a structural resilience to environmental disturbances, spanning a wide range of physicochemical conditions. In the highly arid and nutrient-limited environment of the Dry Valleys, these results provide direct evidence of microbial biogeographic patterns that can shape the communities' response in the face of future environmental changes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282855PMC
http://dx.doi.org/10.1186/s40793-024-00587-0DOI Listing

Publication Analysis

Top Keywords

microbial communities
32
microbial
13
environmental disturbances
12
soil microbial
12
biogeographic patterns
12
dry valleys
8
unique microbial
8
response environmental
8
physicochemical conditions
8
communities
8

Similar Publications

Background: Gasdermin D (GSDMD) is a key effector molecule that activates pyroptosis through its N terminal domain (GSDMD-NT). However, the roles of GSDMD in colorectal cancer (CRC) have not been fully explored. The role of the full-length GSDMD (GSDMD-FL) is also not clear.

View Article and Find Full Text PDF

Background: The treatment of advanced colorectal cancer (CRC) has progressed slowly, with chemotherapy combined with targeted therapy being the first-line treatment for the disease, but the improvement in efficacy is not satisfactory. Compound Kushen injection (CKI) is one of the representative drugs of anti-cancer Chinese herbal injection drugs, which has been widely used in the adjunct treatment of cancer in China. The aim of this trial is to evaluate the efficacy and safety of CKI combined with first-line treatment of advanced CRC.

View Article and Find Full Text PDF

Superior persistence of ustekinumab compared to anti-TNF in vedolizumab-experienced inflammatory bowel diseases patients: a real-world cohort study.

BMC Gastroenterol

December 2024

Department of Gastroenterology and Hepatology, Linkou Branch, Chang Gung Memorial Hospital, 5, Fu-Hsin Street, Guei-Shan District, Taoyuan, 33305, Taiwan.

Background/aims: The increasing use of biologic therapies for moderate to severe inflammatory bowel disease (IBD) highlights the importance of optimal treatment sequencing, particularly after vedolizumab (VDZ) exposure. Studies comparing the effectiveness of ustekinumab (UST) and antitumor necrosis factor (anti-TNF) agents post-VDZ are limited.

Methods: This retrospective study analyzed VDZ-experienced IBD patients treated with UST or anti-TNF (adalimumab and infliximab) from May 2019 to January 2024.

View Article and Find Full Text PDF

NRP1 instructs IL-17-producing ILC3s to drive colitis progression.

Cell Mol Immunol

January 2025

Department of oncology, The Second Hospital of Tianjin Medical University; Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases; Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.

Group 3 innate lymphoid cells (ILC3s) control tissue homeostasis and orchestrate mucosal inflammation; however, the precise mechanisms governing ILC3 activity are fully understood. Here, we identified the transmembrane protein neuropilin-1 (NRP1) as a positive regulator of interleukin (IL)-17-producing ILC3s in the intestine. NRP1 was markedly upregulated in intestinal mucosal biopsies from patients with inflammatory bowel disease (IBD) compared with healthy controls.

View Article and Find Full Text PDF

Development of a microbiome for phenolic metabolism based on a domestication approach from lab to industrial application.

Commun Biol

December 2024

Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.

Despite a lot of efforts devoted to construct efficient microbiomes, there are still major obstacles to moving from the lab to industrial applications due to the inapplicability of existing technologies or limited understanding of microbiome variation regularity. Here we show a domestication strategy to cultivate an effciient and resilient functional microbiome for addressing phenolic wastewater challenges, which involves directional domestication in shaker, laboratory water test in small-scale, gas test in pilot scale, water test in pilot scale, and engineering application in industrial scale. The domestication process includes the transition from water to gas, which provided complex transient environment for screening of a more adaptable and robust microbiome, thereby mitigating the performance disparities encountered when transitioning from laboratory experimentation to industrial engineering applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!