Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Multiple myeloma (MM) is a deadly plasma cell malignancy with elusive pathogenesis. N6-methyladenosine (m6A) is critically engaged in hematological malignancies. The function of KIAA1429, the largest component of methyltransferases, is unknown. This study delved into the mechanism of KIAA1429 in MM, hoping to offer novel targets for MM therapy.
Methods: Bone marrow samples were attained from 55 MM patients and 15 controls. KIAA1429, YTHDF1, and FOXM1 mRNA levels were detected and their correlation was analyzed. Cell viability, proliferation, cell cycle, and apoptosis were testified. Glycolysis-enhancing genes (HK2, ENO1, and LDHA), lactate production, and glucose uptake were evaluated. The interaction between FOXM1 mRNA and YTHDF1, m6A-modified FOXM1 level, and FOXM1 stability were assayed. A transplantation tumor model was built to confirm the mechanism of KIAA1429.
Results: KIAA1429 was at high levels in MM patients and MM cells and linked to poor prognoses. KIAA1429 knockdown restrained MM cell viability, and proliferation, arrested G0/G1 phase, and increased apoptosis. KIAA1429 mRNA in plasma cells from MM patients was positively linked with to glycolysis-enhancing genes. The levels of glycolysis-enhancing genes, glucose uptake, and lactate production were repressed after KIAA1429 knockdown, along with reduced FOXM1 levels and stability. YTHDF1 recognized KIAA1429-methylated FOXM1 mRNA and raised FOXM1 stability. Knockdown of YTHDF1 curbed aerobic glycolysis and malignant behaviors in MM cells, which was nullified by FOXM1 overexpression. KIAA1429 knockdown also inhibited tumor growth in animal experiments.
Conclusion: KIAA1429 knockdown reduces FOXM1 expression through YTHDF1-mediated m6A modification, thus inhibiting MM aerobic glycolysis and tumorigenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282141 | PMC |
http://dx.doi.org/10.1007/s10565-024-09904-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!