Background: This research aimed to investigate the concordance between clinical impressions and histopathologic diagnoses made by clinicians and artificial intelligence tools for odontogenic keratocyst (OKC) and Odontogenic tumours (OT) in a New Zealand population from 2008 to 2023.
Methods: Histopathological records from the Oral Pathology Centre, University of Otago (2008-2023) were examined to identify OKCs and OT. Specimen referral details, histopathologic reports, and clinician differential diagnoses, as well as those provided by ORAD and Chat-GPT4, were documented. Data were analyzed using SPSS, and concordance between provisional and histopathologic diagnoses was ascertained.
Results: Of the 34,225 biopsies, 302 and 321 samples were identified as OTs and OKCs. Concordance rates were 43.2% for clinicians, 45.6% for ORAD, and 41.4% for Chat-GPT4. Corresponding Kappa value against histological diagnosis were 0.23, 0.13 and 0.14. Surgeons achieved a higher concordance rate (47.7%) compared to non-surgeons (29.82%). Odds ratio of having concordant diagnosis using Chat-GPT4 and ORAD were between 1.4 and 2.8 (p < 0.05). ROC-AUC and PR-AUC were similar between the groups (Clinician 0.62/0.42, ORAD 0.58/0.28, Char-GPT4 0.63/0.37) for ameloblastoma and for OKC (Clinician 0.64/0.78, ORAD 0.66/0.77, Char-GPT4 0.60/0.71).
Conclusion: Clinicians with surgical training achieved higher concordance rate when it comes to OT and OKC. Chat-GPT4 and Bayesian approach (ORAD) have shown potential in enhancing diagnostic capabilities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10006-024-01284-5 | DOI Listing |
Oral Maxillofac Surg
December 2024
Department of Oral Diagnostic and Surgical Sciences, University of Otago, Dunedin, New Zealand.
Background: This research aimed to investigate the concordance between clinical impressions and histopathologic diagnoses made by clinicians and artificial intelligence tools for odontogenic keratocyst (OKC) and Odontogenic tumours (OT) in a New Zealand population from 2008 to 2023.
Methods: Histopathological records from the Oral Pathology Centre, University of Otago (2008-2023) were examined to identify OKCs and OT. Specimen referral details, histopathologic reports, and clinician differential diagnoses, as well as those provided by ORAD and Chat-GPT4, were documented.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!