The circadian clock system coordinates metabolic, physiological, and behavioral functions across a 24-h cycle, crucial for adapting to environmental changes. Disruptions in circadian rhythms contribute to major metabolic pathologies like obesity and Type 2 diabetes. Understanding the regulatory mechanisms governing circadian control is vital for identifying therapeutic targets. It is well characterized that chromatin remodeling and 3D structure at genome regulatory elements contributes to circadian transcriptional cycles; yet the impact of rhythmic chromatin topology in metabolic disease is largely unexplored. In this study, we explore how the spatial configuration of the genome adapts to diet, rewiring circadian transcription and contributing to dysfunctional metabolism. We describe daily fluctuations in chromatin contacts between distal regulatory elements of metabolic control genes in livers from lean and obese mice and identify specific lipid-responsive regions recruiting the clock molecular machinery. Interestingly, under high-fat feeding, a distinct interactome for the clock-controlled gene Dbp strategically promotes the expression of distal metabolic genes including Fgf21. Alongside, new chromatin loops between regulatory elements from genes involved in lipid metabolism control contribute to their transcriptional activation. These enhancers are responsive to lipids through CEBPβ, counteracting the circadian repressor REVERBa. Our findings highlight the intricate coupling of circadian gene expression to a dynamic nuclear environment under high-fat feeding, supporting a temporally regulated program of gene expression and transcriptional adaptation to diet.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11335233 | PMC |
http://dx.doi.org/10.1007/s00018-024-05364-3 | DOI Listing |
Sci Prog
January 2025
Virology Group, Vice-Chancellor of Research, Universidad El Bosque, Bogotá, Colombia.
Zika virus (ZIKV) is a flavivirus of significant epidemiological importance, utilizing various transmission strategies and infecting "immune privileged tissues" during both the pre- and postnatal periods. One such transmission method may involve extracellular vesicles (EVs). EVs can travel long distances without degrading, carrying complex messages that trigger different responses in recipient cells.
View Article and Find Full Text PDFBiomol Biomed
January 2025
Department of Cardiovascular Medicine, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China.
Atherosclerosis (AS) is a chronic inflammatory disease associated with lipid deposition in the vascular intima. Copper is a vital trace element implicated in the onset and progression of AS. Excessive intracellular copper accumulation induces a unique form of cell death termed "cuproptosis.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, Göttingen, Germany.
Carbon use efficiency (CUE) of microbial communities in soil quantifies the proportion of organic carbon (C) taken up by microorganisms that is allocated to growing microbial biomass as well as used for reparation of cell components. This C amount in microbial biomass is subsequently involved in microbial turnover, partly leading to microbial necromass formation, which can be further stabilized in soil. To unravel the underlying regulatory factors and spatial patterns of CUE on a large scale and across biomes (forests, grasslands, croplands), we evaluated 670 individual CUE data obtained by three commonly used approaches: (i) tracing of a substrate C by C (or C) incorporation into microbial biomass and respired CO (hereafter C-substrate), (ii) incorporation of O from water into DNA (O-water), and (iii) stoichiometric modelling based on the activities of enzymes responsible for C and nitrogen (N) cycles.
View Article and Find Full Text PDFBiotechnol J
January 2025
Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA.
The implementation of site-specific integration (SSI) systems in Chinese hamster ovary (CHO) cells for the production of monoclonal antibodies (mAbs) can alleviate concerns associated with production instability and reduce cell line development timelines. SSI cell line performance is driven by the interaction between genomic integration location, clonal background, and the transgene expression cassette, requiring optimization of all three parameters to maximize productivity. Systematic comparison of these parameters has been hindered by SSI platforms involving low-throughput enrichment strategies, such as cell sorting.
View Article and Find Full Text PDFBMC Genomics
January 2025
Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
Background: Conserved non-coding sequences (CNS) are islands of non-coding sequences conserved across species and play an important role in regulating the spatiotemporal expression of genes. Identification of CNS provides valuable information about potentially functional genomic elements, regulatory regions, and helps to gain insights into the genetic basis of crop agronomic traits.
Results: Here, we comprehensively analyze CNS in maize, by comparing the genomes of maize inbred line B73 (Zea mays ssp.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!