Soil degradation, marked by declining organic matter, threatens global food security. The impact of brewer's spent yeast (BSY) on clay and sand was analysed at varying application rates to assess its effectiveness in improving soil quality. A randomized complete block design with three replicates was employed. One kilogram of soil were mixed with BSY at application rates of 2 t/ha and 5 t/ha. The samples were incubated at 26 °C for 5 months with daily watering. We analysed pH, total nitrogen, organic carbon, total phosphorus, and electrical conductivity (EC); microbial activity (total heterotrophic bacteria, actinobacteria, and fungi) and soil enzyme activity (dehydrogenase, catalase, protease). BSY application improved soil quality, particularly in clay. Clay showed increased in pH, EC, N and C. BSY significantly boosted microbial populations (bacteria, fungi) in clay with a lesser effect in sand. Enzyme activity and a fertility index also improved in BSY-treated clay, while sand displayed increased activity of a different enzyme. Results suggest BSY holds promise as an organic fertilizer, especially for clay soils. Further research is needed to optimize application, understand long-term effects, and evaluate economic feasibility and social acceptance. This study contributes to the search for sustainable, local solutions to improve soil health and agricultural practices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282282PMC
http://dx.doi.org/10.1038/s41598-024-67668-5DOI Listing

Publication Analysis

Top Keywords

clay sand
8
application rates
8
soil quality
8
bsy application
8
enzyme activity
8
soil
7
clay
6
application
5
bsy
5
possibility brewery
4

Similar Publications

Bacterial Community Structure and Environmental Driving Factors in the Surface Sediments of Six Mangrove Sites from Guangxi, China.

Microorganisms

December 2024

Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China.

Mangroves, as blue carbon reservoirs, provide a unique habitat for supporting a variety of microorganisms. Among these, bacteria play crucial roles in the biogeochemical processes of mangrove sediments. However, little is known about their community composition, spatial distribution patterns, and environmental driving factors, particularly across the large geographical scales of mangrove wetlands.

View Article and Find Full Text PDF

From both economic and environmental points of view, the reuse of dredged sediments in the direct onsite casting of concrete represents a promising method for replacing sand. The aim of this study was to develop a cementitious material that (i) reuses the thin particles of sediments; (ii) has a low density due to the incorporation of air foam in the material; and (iii) achieves a minimum mechanical strength of 0.5 MPa for embankment applications.

View Article and Find Full Text PDF

A Study on the Effect of Graphene Oxide on Geotechnical Properties of Soil.

Materials (Basel)

December 2024

Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin 17104, Republic of Korea.

Edge-oxidized graphene oxide (EOGO) is a nano-sized material that is chemically stable and easily mixed with water due to its hydrophilic properties; thus, it has been used in various engineering fields, particularly for the reinforcement of building and construction materials. In this study, the effect of EOGO in soil reinforcement was investigated. When mixed with soil, it affects the mechanical properties of the soil-GO mixture.

View Article and Find Full Text PDF

The establishment of site-specific target limits (SSTLs) for old municipal solid waste (MSW) dumpsites is essential for defining remediation goals in a scientifically rigorous manner. However, a standardized framework for achieving this is currently lacking. This study proposes a comprehensive framework that integrates high-resolution site characterization (HRSC) tools, targeted sampling, and contaminant transport modeling to derive SSTLs.

View Article and Find Full Text PDF

The application of sand-clay mixtures is diverse in contemporary engineering practices, with particular emphasis on their shear strength characteristics. This study focused on the estimation of the shear strength of sand-clay mixtures using the artificial neural network (ANN) and low-field nuclear magnetic resonance (NMR) spectroscopy. In this study, NMR tests and triaxial compression tests were carried out on 160 artificial sand-clay mixtures with different mineralogical compositions, water contents, and dry densities in the laboratory to obtain the T spectra and shear strength indices, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!