The Mantle Transition Zone (MTZ) beneath the Uttarakhand Himalaya has been modelled using Common Conversion Point (CCP) stacking and depth-migration of radial P-receiver functions. In the Uttarakhand Himalaya region, the depths of the 410-km discontinuity (d410) and the 660-km discontinuity (d660) are estimated to be approximately 406 ± 8 km and 659 ± 10 km, respectively. Additionally, the thickness of the mantle transition zone (MTZ) is modelled to be 255 ± 7 km. The average arrival times for d410 and d660 conversions are (44.47 ± 1.33) s and (71.08 ± 1.29) s, respectively, indicating an undisturbed slightly deeper d410 and a deformed noticeably deeper d660 in the area. The model identifies the characteristics of the d410 and d660 mantle discontinuities beneath the Lesser Himalayan region, revealing a thickening of the MTZ towards northeast, which could be due to gradual cooling or thickening of the Indian lithosphere towards its northern limit. We simulate a low-velocity layer (perhaps partially molten) above the d410 discontinuity at depths of 350 to 385 km, indicating the presence of a hydrated MTZ beneath the area. We also interpret a negative phase at d660 as a low-velocity layer between 590 and 640 km depths, which could be attributed to the accumulation of old subducted oceanic materials or increased water content at the bottom of the MTZ. Our results suggest the presence of residues from paleo-subducted lithospheric slabs in and below the mantle transition zone underlying the Uttarakhand Himalayas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282067 | PMC |
http://dx.doi.org/10.1038/s41598-024-67941-7 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China.
Subducted plates often stagnate in the mantle transition zone (MTZ), and the fate of the stagnant slabs is still debatable. They may sink into the lower mantle, or remain partially trapped in the MTZ, but it is uncertain whether they can return to the upper mantle. We report geochemical evidence of late-Miocene (~6 Ma) basalts from, and upper mantle seismic evidence beneath Shuangyashan, an area above the slab tear of the stagnant Pacific plate in eastern Asia, to show how the slab returns to the upper mantle from the MTZ.
View Article and Find Full Text PDFA key question in the planetary sciences centers on the divergence between the sibling planets, Venus and Earth. Venus currently does not operate with plate tectonics, and its thick atmosphere has led to extreme greenhouse conditions. It is unknown if this state was set primordially or if Venus was once more Earth-like.
View Article and Find Full Text PDFSci Rep
January 2025
School of Safety Engineering and Emergency Management, Shijiazhuang Tiedao University, Shijiazhuang, 050043, China.
In the eastern segment of the Central Asian Orogenic Belt (CAOB), there is widespread volcanic magma activity. However, there is still considerable controversy over the formation mechanisms and material sources of these volcanoes. The mantle transition zone (MTZ), as a necessary channel for the upward and downward movement of mantle material and energy exchange may provide crucial constraints on the dynamic mechanisms of volcanic activity.
View Article and Find Full Text PDFJ Exp Zool A Ecol Integr Physiol
December 2024
Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
Estuaries are diverse coastal ecosystems that act as transitional zones between freshwater and seawater. The Don Hoi Lot tidal flat, located in the upper Gulf of Thailand, is one of Thailand's most important estuarine ecosystems. Nonetheless, the Don Hoi Lot area faces increasing environmental pressures due to human activities and natural changes.
View Article and Find Full Text PDFProg Earth Planet Sci
December 2024
School of Earth Sciences, Zhejiang University, Hangzhou, China.
Recent experimental investigations of grain size evolution in bridgmanite-ferropericlase assemblages have suggested very slow growth for these bimodal phases. Despite numerous speculations on grain size-dependent viscosity, a comprehensive test with realistic grain size evolution parameters compatible with the lower mantle has been lacking. In this study, we develop self-consistent 2-D spherical half-annulus geodynamic models of Earth's evolution using the finite volume code StagYY to assess the role of grain size on lower mantle viscosity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!