Surface-induced water crystallisation driven by precursors formed in negative pressure regions.

Nat Commun

Department of Fundamental Engineering, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan.

Published: July 2024

Ice nucleation is a crucial process in nature and industries; however, the role of the free surface of water in this process remains unclear. To address this, we investigate the microscopic freezing process using brute-force molecular dynamics simulations. We discover that the free surface assists ice nucleation through an unexpected mechanism. The surface-induced negative pressure enhances the formation of local structures with a ring topology characteristic of Ice 0-like symmetry, promoting ice nucleation despite the symmetry differing from ordinary ice crystals. Unlike substrate-induced nucleation via water-solid interactions that occurs directly on the surface, this negative-pressure-induced mechanism promotes ice nucleation slightly inward the surface. Our findings provide a molecular-level understanding of the mechanism and pathway behind free-surface-induced ice formation, resolving the longstanding debate. The implications of our discoveries are of substantial importance in areas such as cloud formation, food technology, and other fields where ice nucleation plays a pivotal role.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282091PMC
http://dx.doi.org/10.1038/s41467-024-50188-1DOI Listing

Publication Analysis

Top Keywords

ice nucleation
20
negative pressure
8
ice
8
free surface
8
nucleation
6
surface-induced water
4
water crystallisation
4
crystallisation driven
4
driven precursors
4
precursors formed
4

Similar Publications

Tea polyphenol-loaded chitosan/pectin nanoparticle as a nucleating agent for slurry ice production and its application in preservation of large yellow croaker (Pseudosciaena crocea).

Int J Biol Macromol

January 2025

College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China. Electronic address:

Slurry ice preparation experiences considerable supercooling, which can be mitigated by nano-nucleating agents. A nano-nucleating agent (CH/PE-TP NPs) was prepared by ultrasonication-assistant self-assembly of chitosan (CH) and pectin (PE), encapsulated with tea polyphenols (TP). Ultrasonication for 10 min downsized self-assembled aggregates from 5.

View Article and Find Full Text PDF

Antifreeze Protein-Inspired Zwitterionic Graphene Oxide Nanosheets for a Photothermal Anti-icing Coating.

Nano Lett

January 2025

Department of Biochemical Engineering, School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China.

Organisms that survive at freezing temperatures produce antifreeze proteins (AFPs) to manage ice nucleation and growth. Inspired by AFPs, a series of synthetic materials have been developed to mimic these proteins in order to avoid the limitations of natural AFPs. Despite their great importance in various antifreeze applications, the relationship between structure and performance of AFP mimics remains unclear, especially whether their molecular charge-specific effects on ice inhibition exist.

View Article and Find Full Text PDF

An Alternative Hypothesis on Enhanced Deep Supercooling of Water: Nucleator Inhibition via Bicarbonate Adsorption.

J Phys Chem Lett

January 2025

Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, F-69621 Villeurbanne Cédex, France.

Supercooling allows for retarding water crystallization toward negative Celsius temperatures. Previous findings of CO molecules shifting into bicarbonate species upon freezing, the latter which naturally adsorb on hydrophobic interfaces, are put in perspective here to interpret earlier published data. Since it has been shown that ice nucleation is unlikely on negatively charged surfaces, I propose that bicarbonates adsorb on most solid particles present in water that act as nucleators, thus retarding freezing and enhancing supercooling.

View Article and Find Full Text PDF

Role variability of surface chemistry and surface topography in anti-icing performance.

iScience

November 2024

Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.

Largely varied anti-icing performance among superhydrophobic surfaces remains perplexing and challenging. Herein, the issue is elucidated by exploring the roles of surface chemistry and surface topography in anti-icing. Three superhydrophobic surfaces, i.

View Article and Find Full Text PDF

Numerous commercially available biopharmaceuticals are frozen or freeze-dried in vials. The temperature at which ice nucleates and its distribution across vials in a batch is critical to the design of freezing and freeze-drying processes. Here we study experimentally how the level of particulate impurities - a key parameter in pharmaceutical manufacturing - affects the ice nucleation behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!