Modelling the colony growth dynamics of Listeria monocytogenes single cells after exposure to peracetic acid and acidic conditions.

Food Res Int

Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece. Electronic address:

Published: September 2024

Studies of classical microbiology rely on the average behaviour of large cell populations without considering that clonal bacterial populations may bifurcate into phenotypic distinct sub-populations by random switching mechanisms.Listeria monocytogenes exposure to sublethal stresses may induce different physiological states that co-exist (i.e., sublethal injury or dormancy) and present variable resuscitation capacity. Exposures to peracetic acid (PAA; 10-30 ppm; for 3 h), acetic acid and hydrochloric acid (AA and HCl; pH 3.0-2.5; for 5 h) at 20 °C were used to induce different physiological states in L. monocytogenes, Scott A strain. After stress exposure, colony growth of single cells was monitored, on Tryptic Soy Agar supplemented with 0.6 % Yeast Extract, using time-lapse microscopy, at 37 °C. Images were acquired every 5 min and were analyzed using BaSCA framework. Most of the obtained growth curves of the colonies were fitted to the model of Baranyi and Roberts for the estimation of lag time (λ) and maximum specific growth rate (μ), except the ones obtained after exposure to AA pH 2.7 and 2.5 that were fitted to the Trilinear model. The data of λ and μ that followed a multivariate normal distribution were used to predict growth variability using Monte Carlo simulations. Outgrowth kinetics after treatment with AA (pH 2.7 and 2.5; for 5 h at 20 °C), PAA (30 ppm; for 3 h at 20 °C) revealed that these stress conditions increase the skewness of the variability distributions to the right, meaning that the variability in lag times increases in favour of longer outgrowth. Exposures to AA pH 2.5 and 30 ppm PAA resulted in two distinct subpopulations per generation with different growth dynamics. This switching mechanism may have evolved as a survival strategy for L. monocytogenes cells, maximizing the chances of survival. Simulation of microbial growth showed that heterogeneity in growth dynamics is increased when cells are recovering from exposure to sublethal stresses (i.e. PAA and acidic conditions) that may induce injury or dormancy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2024.114684DOI Listing

Publication Analysis

Top Keywords

growth dynamics
12
growth
8
colony growth
8
single cells
8
peracetic acid
8
acidic conditions
8
exposure sublethal
8
sublethal stresses
8
induce physiological
8
physiological states
8

Similar Publications

Since 1999, every report released by the International Panel on Climate Change has advocated a decrease in the greenhouse gas emissions associated with aviation in order to preserve the current climate. This study used a two variable differential equations model with a non-linear control term to address several aspects of the emissions stabilization issue. By optimizing the control term parameter, several management alternatives can be obtained based on the properties of the phase plane of the model solutions, as identified by a stability analysis.

View Article and Find Full Text PDF

Molecular and cellular dynamics of the developing human neocortex.

Nature

January 2025

The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.

The development of the human neocortex is highly dynamic, involving complex cellular trajectories controlled by gene regulation. Here we collected paired single-nucleus chromatin accessibility and transcriptome data from 38 human neocortical samples encompassing both the prefrontal cortex and the primary visual cortex. These samples span five main developmental stages, ranging from the first trimester to adolescence.

View Article and Find Full Text PDF

Microneedles (MNs) appear as a transformative and minimally invasive platform for transdermal drug delivery, representing a highly promising strategy in wound healing therapeutics. This technology, entailing the fabrication of micron-scale needle arrays, enables the targeted and efficient delivery of bioactive agents into the epidermal and dermal layers without inducing significant pain or discomfort. The precise penetration of MNs facilitates localized and sustained drug release, which significantly enhances tissue regeneration and accelerates wound closure.

View Article and Find Full Text PDF

Split Membrane: A New Model to Accelerate All-Atom MD Simulation of Phospholipid Bilayers.

J Chem Inf Model

January 2025

CEITEC─Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.

All-atom molecular dynamics simulations are powerful tools for studying cell membranes and their interactions with proteins and other molecules. However, these processes occur on time scales determined by the diffusion rate of phospholipids, which are challenging to achieve in all-atom models. Here, we present a new all-atom model that accelerates lipid diffusion by splitting phospholipid molecules into head and tail groups.

View Article and Find Full Text PDF

Enhancing fermented vegetable flavor with Lactobacillus plantarum and Rhodotorula mucilaginosa.

Food Res Int

January 2025

Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, 650500 Kunming, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China. Electronic address:

The formation of flavor in fermented vegetables is directly associated with the interactions among the resident microbial strains. This study explored the cooperative dynamics between Lactobacillus plantarum and Rhodotorula mucilaginosa in a simulated cabbage juice system. The obtained results indicated that the co-cultivation of these strains accelerated fermentation kinetics and enhanced lactic acid production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!