Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Roasting walnut kernel significantly improves the oxidative stability and sensory properties of its oil. However, the effect of roasting temperatures on the molecular change of main components and micronutrients in walnut oil is still unclear. Herein, lipidomics and metabolomics were integrated to comprehensively profile the walnut oil obtained at different roasting temperatures (30 °C, 120 °C, 140 °C, 160 °C, and 180 °C). Lipidomics showed that the content of glycerolipids, sphingolipids, and glycerophospholipids decreased with roasting temperatures, while the oxidized fatty acids and triglycerides increased. Ratios of linoleic acid and linolenic acid varied with roasting temperatures and were most close to 4-6:1 at 140 °C, 160 °C, and 180 °C. Major classes of micronutrients showed a tendency to increase at the roasting temperature of 120 °C and 140 °C, then decrease at 160 °C and 180 °C. Liposoluble amino acids identified for the first time in walnut oil varied with roasting temperatures. Correlation analysis demonstrated that the higher contents of liposoluble amino acids and phenolics are positively associated with enhanced oxidative stability of walnut oil obtained at 140 °C. Furthermore, glutamine and 5-oxo-D-proline were expected to be potential biomarkers to differentiate the fresh and roasted walnut oil. The study is expected to provide new insight into the change mechanism of both major lipids and micronutrients in walnut oil during the roasting process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2024.114695 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!