The development and commercialisation of medical decision systems based on artificial intelligence (AI) far outpaces our understanding of their value for clinicians. Although applicable across many forms of medicine, we focus on characterising the diagnostic decisions of radiologists through the concept of ecologically bounded reasoning, review the differences between clinician decision making and medical AI model decision making, and reveal how these differences pose fundamental challenges for integrating AI into radiology. We argue that clinicians are contextually motivated, mentally resourceful decision makers, whereas AI models are contextually stripped, correlational decision makers, and discuss misconceptions about clinician-AI interaction stemming from this misalignment of capabilities. We outline how future research on clinician-AI interaction could better address the cognitive considerations of decision making and be used to enhance the safety and usability of AI models in high-risk medical decision-making contexts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S2589-7500(24)00095-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!