Background: To investigate the causal relationship between human papillomavirus (HPV) and lung cancer, we conducted a study using the two-sample Mendelian randomization (TSMR).

Method: Data from genome-wide association studies (GWAS) were analyzed with HPV E7 Type 16 and HPV E7 Type 18 as exposure factors. The outcome variables included lung cancer, small cell lung cancer, adenocarcinoma and squamous cell lung cancer. Causality was estimated using inverse variance weighted (IVW), MR-Egger and weighted median methods. Heterogeneity testing, sensitivity analysis, and multiple validity analysis were also performed..

Results: The results showed that HPV E7 Type 16 infection was associated with a higher risk of squamous cell lung cancer (OR = 7.69; 95% CI:1.98-29.85; p = 0.0149). HPV E7 Type 18 infection significantly increased the risk of lung adenocarcinoma (OR = 0.71; 95% CI: 0.38-1.31; p = 0.0079) and lung cancer (OR = 7.69; 95% CI:1.98-29.85; p = 0.0292). No significant causal relationship was found between HPV E7 Type 16 and lung adenocarcinoma, lung cancer, or small cell lung carcinoma, and between HPV E7 Type 18 and squamous cell lung cancer or small cell lung carcinoma.

Conclusions: This study has revealed a causal relationship between HPV and lung cancers. Our findings provide valuable insights for further mechanistic and clinical studies on HPV-mediated cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meegid.2024.105646DOI Listing

Publication Analysis

Top Keywords

lung cancer
36
hpv type
24
cell lung
24
lung
14
causal relationship
12
cancer small
12
small cell
12
squamous cell
12
cancer
10
human papillomavirus
8

Similar Publications

Feasibility of detecting non-small cell lung cancer using exhaled breath condensate metabolomics.

J Breath Res

January 2025

School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Rd, Qingdao, Shandong, 266003, CHINA.

Lung cancer is one of the most common malignancy in the world, and early detection of lung cancer remains a challenge. The exhaled breath condensate (EBC) from lung and trachea can be collected totally noninvasively. In this study, our aim is to identify differential metabolites between non-small cell lung cancer (NSCLC) and control EBC samples and discriminate NSCLC group from control group by orthogonal projections to latent structures-discriminant analysis (OPLS-DA) models.

View Article and Find Full Text PDF

Substantial epidemiological evidence suggests a significant correlation between particulate matter 2.5 (PM) and lung cancer. However, the mechanism underlying this association needs to be further elucidated.

View Article and Find Full Text PDF

A previous study classifies solid tumors based on collagen deposition and immune infiltration abundance, identifying a refractory subtype termed armored & cold tumors, characterized by elevated collagen deposition and diminished immune infiltration. Beyond its impact on immune infiltration, collagen deposition also influences tumor angiogenesis. This study systematically analyzes the association between immuno-collagenic subtypes and angiogenesis across diverse cancer types.

View Article and Find Full Text PDF

Breath analysis is increasingly recognized as a powerful noninvasive diagnostic technique, and a plethora of exhaled volatile biomarkers have been associated with various diseases. However, traditional analytical methodologies are not amenable to high-throughput diagnostic applications at the point of need. An optical spectroscopic technique, surface-enhanced Raman spectroscopy (SERS), mostly used in the research setting for liquid sample analysis, has recently been applied to breath-based diagnostics.

View Article and Find Full Text PDF

The increasing shift from cannabis smoking to cannabis vaping is largely driven by the perception that vaping to form an aerosol represents a safer alternative to smoking and is a form of consumption appealing to youth. Herein, we compared the chemical composition and receptor-mediated activity of cannabis smoke extract (CaSE) to cannabis vaping extract (CaVE) along with the biological response in human bronchial epithelial cells. Chemical analysis using HPLC and GC/MS revealed that cannabis vaping aerosol contained fewer toxicants than smoke; CaSE and CaVE contained teratogens, carcinogens, and respiratory toxicants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!