Cancer neuroscience, a promising field dedicated to exploring interactions between cancer and the nervous system, has attracted growing attention. The gastrointestinal tracts exhibit extensive innervation, notably characterized by intrinsic innervation. The gut harbors a substantial population of glial cells, including Schwann cells wrapping axons of neurons in the peripheral nervous system and enteric glial cells intricately associated with intrinsic innervation. Glial cells play a crucial role in maintaining the physiological functions of the intestine, encompassing nutrient absorption, barrier integrity, and immune modulation. Nevertheless, it has only been in recent times that the significance of glial cells within colorectal cancer (CRC) has begun to receive considerable attention. Emerging data suggests that glial cells in the gut contribute to the progression and metastasis of CRC, by interacting with cancer cells, influencing inflammation, and modulating the tumor microenvironment. Here, we summarize the significant roles of glial cells in the development and progression of CRC and discuss the latest technologies that can be integrated into this field for in-depth exploration, as well as potential specific targeted strategies for future exploration to benefit patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbcan.2024.189160 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!