How do glyphosate and AMPA alter the microbial community structure and phosphorus cycle in rice-crayfish systems?

Environ Res

School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China. Electronic address:

Published: November 2024

Glyphosate, a commonly used organophosphorus herbicide in rice-crayfish cropping regions, may alter regional phosphorus cycle processes while affecting the structure of microbial communities. However, the effects of glyphosate residues on rice-crayfish systems remain unclear. In this study, we assessed the spatial and temporal distribution characteristics of glyphosate and its primary degradation products, as well as the impact mechanisms of glyphosate on microbial communities and the phosphorus cycle in rice-crayfish systems such as paddy fields, breeding ditches and recharge rivers. The detection rates of glyphosate and aminomethylphosphonic acid (AMPA) were 100% in rice-crayfish systems. Concentrations of glyphosate in the water phase and soil/sediment were as high as 0.012 μg/L and 7.480 μg/kg, respectively, and concentrations of AMPA were as high as 17.435 μg/L and 13.200 μg/kg, respectively. Glyphosate concentrations were not affected by rainfall or sampling site, but concentrations of AMPA in the water phase of recharge rivers were affected by rainfall. The glyphosate concentration was significantly and positively correlated with RBG-16-58-14 abundance, and the AMPA concentration was significantly and positively correlated with Actinobacteria and Lysobacter abundance, and negatively correlated with Cyanobacteria abundance (P < 0.05). The highest abundances of phoD, phnK, and ppx genes were found in all soils/sediments. Glyphosate concentration in soil/sediment was significantly and positively correlated with the abundance of phoD gene encoding an organophosphorus-degrading enzyme and ppx gene encoding poly inorganic phosphate (Pi) hydrolase (P < 0.05). In addition, the glyphosate concentration was significantly and positively correlated with the Ca-bonded Pi content (P < 0.05). This implies that glyphosate may promote the production of stable Pi in rice-crayfish systems by increasing the abundance of phoD and ppx genes. The results of this study reveal the impact mechanism of glyphosate on the phosphorus cycle in rice-crayfish systems and provide a basis for the risk assessment of glyphosate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.119679DOI Listing

Publication Analysis

Top Keywords

phosphorus cycle
12
rice-crayfish systems
12
glyphosate
9
cycle rice-crayfish
8
microbial communities
8
recharge rivers
8
water phase
8
concentrations ampa
8
concentration positively
8
positively correlated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!