Winter is a critical period for largemouth bass (Micropterus nigricans) with winter severity and duration limiting their population growth at northern latitudes. Unfortunately, we have an incomplete understanding of their winter behaviour and energy use in the wild. More winter-focused research is needed to better understand their annual energy budget, improve bioenergetics models, and establish baselines to assess the impacts of climate warming; however, winter research is challenging due to ice cover. Implantable tags show promise for winter-focused research as they can be deployed prior to ice formation. Here, using swim tunnel respirometry, we calibrated heart rate and acceleration biologgers to enable estimations of metabolic rate (ṀO) and swimming speed in free-swimming largemouth bass across a range of winter-relevant temperatures. In addition, we assessed their aerobic and swim performance. Calculated group thermal sensitivities of most performance metrics indicated the passive physicochemical effects of temperature, suggesting little compensation in the cold; however, resting metabolic rate and critical swimming speed showed partial compensation. We found strong relationships between acceleration and swimming speed, as well as between ṀO and heart rate, acceleration, or swimming speed. Jackknife validations indicated that these modeled relationships accurately estimate swimming speed and ṀO from biologger recordings. However, there were relatively few reliable heart rate recordings to model the ṀO relationship. Recordings of heart rate were high-quality during holding but dropped during experimentation, potentially due to interference from aerobic muscles during swimming. The models informed by acceleration or swimming speed appear to be best suited for field applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpa.2024.111708 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!