Central command, a motor volition originating in the rostral part of the brain, plays a pivotal role in the precise regulation of autonomic nervous and cardiovascular systems. Central neuronal substrates responsible for transmitting central command signals remain incompletely understood. This study aimed to investigate the effect of optogenetic excitation of non-orexinergic (NOrx) neurons in the hypothalamic perifornical area (PeFA), where orexinergic neurons are densely distributed, on motor behaviors and cardiovascular parameters in rats. An adeno-associated viral serotype 2 vector carrying the human synapsin promoter encoding channelrhodopsin 2 (ChR2) fused to EYFP was injected into the PeFA of Sprague-Dawley rats, resulting in selective expression of ChR2-EYFP in NOrx PeFA neurons. In conscious rats, optogenetic excitation of NOrx PeFA neurons rapidly elicited walking or biting behavior, simultaneously causing pressor and tachycardiac responses regardless of the observed behavioral patterns. Under anesthesia, this excitation rapidly increased renal sympathetic nerve activity, immediately followed by sympathoinhibition. These findings suggest that NOrx PeFA neurons transmit central command signals, concurrently regulating somatomotor and autonomic nervous systems for locomotor exercise or biting behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2024.137915 | DOI Listing |
bioRxiv
December 2024
Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146.
Animals alter their behavior in response to changes in the environment. Upon encountering hyperosmotic conditions, the nematode worm initiates avoidance and cessation of egg-laying behavior. While the sensory pathway for osmotic avoidance is well-understood, less is known about how egg laying is inhibited.
View Article and Find Full Text PDFArch Microbiol
January 2025
Department of Botany, CMS College Kottayam, Kottayam, Kerala, 686001, India.
Among all photosynthetic life forms, cyanobacteria exclusively possess a water-soluble, light-sensitive carotenoprotein complex known as orange carotenoid proteins (OCPs), crucial for their photoprotective mechanisms. These protein complexes exhibit both structural and functional modularity, with distinct C-terminal (CTD) and N-terminal domains (NTD) serving as light-responsive sensor and effector regions, respectively. The majority of cyanobacterial genomes contain genes for OCP homologs and related proteins, highlighting their essential role in survival of the organism over time.
View Article and Find Full Text PDFNat Commun
January 2025
Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genova, Italy.
The lack of effective therapies for visual restoration in Retinitis pigmentosa and macular degeneration has led to the development of new strategies, such as optogenetics and retinal prostheses. However, visual restoration is poor due to the massive light-evoked activation of retinal neurons, regardless of the segregation of visual information in ON and OFF channels, which is essential for contrast sensitivity and spatial resolution. Here, we show that Ziapin2, a membrane photoswitch that modulates neuronal capacitance and excitability in a light-dependent manner, is capable of reinstating, in mouse and rat genetic models of photoreceptor degeneration, brisk and sluggish ON, OFF, and ON-OFF responses in retinal ganglion cells evoked by full-field stimuli, with reactivation of their excitatory and inhibitory conductances.
View Article and Find Full Text PDFNPJ Parkinsons Dis
January 2025
Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.
Parkinson's disease arises from the degeneration of dopaminergic neurons in the substantia nigra pars compacta, leading to motor symptoms such as akinesia, rigidity, and tremor at rest. The non-motor component of Parkinson's disease includes increased neuropathic pain, the prevalence of which is 4 to 5 times higher than the general rate. By studying a mouse model of Parkinson's disease induced by 6-hydroxydopamine, we assessed the impact of dopamine depletion on pain modulation.
View Article and Find Full Text PDFGenetically encoded calcium (Ca ) indicators (GECIs) are widely used for imaging neuronal activity, yet current limitations of existing red fluorescent GECIs have constrained their applicability. The inherently dim fluorescence and low signal-to-noise ratio of red-shifted GECIs have posed significant challenges. More critically, several red-fluorescent GECIs exhibit photoswitching when exposed to blue light, thereby limiting their applicability in all- optical experimental approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!