Herein, the complex coacervation of low methoxy pectin (LMP) with three types of gelatins was explored to encapsulate fish oil. The fish oil@gelatin-LMP complex coacervates with good precipitation separation could be obtained at low gelatin concentrations (Fish gelatin, FG: 10-80 mg/mL; porcine skin gelatin, PSG: 10-40 mg/mL; bovine skin gelatin, BSG: 10-80 mg/mL), high gelatin: fish oil mass ratios (4:1-1:1), appropriate gelatin: LMP mass ratios (3:1-12:1 for FG and PSG, 6:1 for BSG), and appropriate pH (FG: 4.90-5.50; PSG: 4.80-5.40; BSG: 4.10-4.50). FG induced similar loading ability, lower encapsulation ability, and comparable peroxide values to the mammalian gelatins. FG induced higher or similar free fatty acid released percentages to mammalian gelatins in the in vitro gastrointestinal model at low gelatin concentrations (10-40 mg/mL). These results provided useful information to understand the protein-polysaccharide complex coacervation to encapsulate oil-based bioactive substances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.140567 | DOI Listing |
Int J Biol Macromol
January 2025
Laboratoire de recherche sur les produits bioactifs et valorisation de la biomasse, Ecole Normale Supérieure de Kouba cheikh Mohamed elbachir ElIbrahimi, B.P. 92, 16308 Vieux-Kouba, Algiers, Algeria. Electronic address:
This study aimed to use a new protein complex of Pennisetin (Pen) a non gluten protein of pearl millet and casein (Cas), for curcumin (Cur) extract encapsulation using simple or complex coacervation. The potential improvement of Cur antioxidant activities and α-amylase inhibition after encapsulation was explored. Complex microparticles of Pen and Cas with various ratios exhibited average diameters ranging from 1.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
Hierarchical structures are essential in natural adhesion systems. Replicating these in synthetic adhesives is challenging due to intricate molecular mechanisms and multiscale processes. Here, we report three phosphorylated peptides featuring a hydrophobic self-assembly motif linked to a hydrophilic phosphorylated sequence (pSGSS), forming peptide fibril nanoframeworks.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
The assembly of peptides is generally mediated by liquid-liquid phase separation, which enables control over assembly kinetics, final structure, and functions of peptide-based supramolecular materials. Modulating phase separation can alter the assembly kinetics of peptides by changing solvents or introducing external fields. Herein, we demonstrate that the assembly of peptides can be effectively catalyzed by complex coacervates.
View Article and Find Full Text PDFNat Chem
January 2025
Department of Bio-Organic Chemistry, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
The cytoskeleton is a crucial determinant of mammalian cell structure and function, providing mechanical resilience, supporting the cell membrane and orchestrating essential processes such as cell division and motility. Because of its fundamental role in living cells, developing a reconstituted or artificial cytoskeleton is of major interest. Here we present an approach to construct an artificial cytoskeleton that imparts mechanical support and regulates membrane dynamics.
View Article and Find Full Text PDFLangmuir
December 2024
Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.
Circular dichroism (CD) spectroscopy has emerged as a potent tool for probing chiral small-molecule ligand exchange on natively achiral quantum dots (QDs). In this study, we report a novel approach to identifying QD-biomolecule interactions by inducing chirality in CdS QDs using thermoresponsive elastin-like polypeptides (ELPs) engineered with C-terminal cysteine residues. Our method is based on a versatile two-step ligand exchange process starting from monodisperse oleate-capped QDs in nonpolar media and proceeding through an easily accessed achiral glycine-capped QD intermediate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!