Organic molecular electrode materials are promising candidates in batteries. However, direct application of small molecule materials usually suffers from drastic capacity decay and inefficient utilization of active materials because of their high solubility in organic electrolytes and low electrical conductivity. Herein, a simple strategy is found to address the above issues through coating the small-molecule organic materials on a commercialized carbon-coated aluminum foil (CCAF) as the enhanced electrode. Both the experimental and calculation results confirm that the relatively rough carbon coating on the aluminum foil not only exhibits superior adsorption capacity of small-molecule organic electrode materials with a tight contact interface but also provides continuous electronic conduction channels for the facilitated charge transfer and accelerated reaction kinetics. In addition, the carbon coating also inhibits Al corrosion in electrochemical process. As a result, by using the tetrahydroxy quinone-fused aza-phenazine (THQAP) molecule as an example, the THQAP-CCAF electrode exhibits an excellent rate performance with a high capacity of 220 and 180 mAh g at 0.1 and 2 A/g, respectively, and also a remarkable cyclability with a capacity retention of 77.3% even after 1700 cycles in sodium-ion batteries. These performances are much more superior than that of batteries with the THQAP on bare aluminum foil (THQAP-AF). This work provides a substantial step in the practical application of the small-molecule organic electrode materials for future sustainable batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.07.170 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!