A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantum and coherent signal transmission on a single-frequency channel via the electro-optic serrodyne technique. | LitMetric

Fiber-optical networks are well established to accommodate global data traffic via coherent information transmission. The next generation of telecommunications will require the integration of quantum information into fiber-optic networks, e.g., for quantum key distribution. A promising and scalable route to enable quantum networking is encoding quantum information into the frequency of photons. While the cointegration of frequency-entangled photons with coherent information transmission is achieved via spectral multiplexing, more resource-efficient approaches are required. In this work, we introduce and experimentally demonstrate a transceiver concept that enables the transmission of coherent and frequency-entangled photons over a single-frequency channel. Our concept leverages the serrodyne technique via electro-optic phase modulation leading to very different dynamics for entangled and coherent photons. This enables temporal multiplexing of the respective signals. We demonstrate the preservation of entanglement over the channel in the presence of coherent light. Our approach reveals a strong potential for efficient bandwidth use in hybrid networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11277375PMC
http://dx.doi.org/10.1126/sciadv.adn8907DOI Listing

Publication Analysis

Top Keywords

single-frequency channel
8
serrodyne technique
8
coherent transmission
8
frequency-entangled photons
8
quantum
5
coherent
5
quantum coherent
4
coherent signal
4
transmission
4
signal transmission
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!