This paper presents the design and isolation enhancement of a filtering MIMO antenna with a radiation null for out-of-band suppressions suited for 5G sub-6 GHz communications. The MIMO antenna offers -10 dB impedance bandwidth functionality at the most prominent partial spectrum of the 5G NR n78 band for enabling wireless applications in base stations, ranging from 3.4 GHz to 3.61 GHz. To mitigate the redundancy of an RF filter and to achieve a strong filtering response, a radiation null is produced in the gain with four identical rectangular slots, which results in a significant gain drop of more than 8 dBi at the stopband. The geometrical design also allows 30 percent size reduction of single element. Subsequently, a closely spaced (0.11λ0) two-port MIMO antenna is implemented and with the utilization of the proposed rectangular shaped hollow stub parasitic element, the interelement isolation is significantly improved by more than 8 dB over the operational frequency range while retaining the filtering without any additional RF structure. The design simplification, peak gain of 5.4 dBi, near ideal response of diversity gain, ECC less than 0.03, congruency between simulated and measured results, and stable parameters make it a valuable choice for 3.5 GHz sub-6 GHz communications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11280533PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0306446PLOS

Publication Analysis

Top Keywords

mimo antenna
16
radiation null
12
sub-6 ghz
12
closely spaced
8
two-port mimo
8
antenna radiation
8
null out-of-band
8
out-of-band suppressions
8
ghz communications
8
ghz
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!