A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel maternal thyroid disease prediction using multi-scale vision transformer architecture with improved linguistic hedges neural-fuzzy classifier. | LitMetric

Background: Early pregnancy thyroid function assessment in mothers is covered. The benefits of using load-specific reference ranges are well-established.

Objective: We pondered whether the categorization of maternal thyroid function would change if multiple blood samples obtained early in pregnancy were used. Even though binary classification is a common goal of current disease diagnosis techniques, the data sets are small, and the outcomes are not validated. Most current approaches concentrate on model optimization, focusing less on feature engineering.

Methods: The suggested method can predict increased protein binding, non-thyroid syndrome (NTIS) (simultaneous non-thyroid disease), autoimmune thyroiditis (compensated hypothyroidism), and Hashimoto's thyroiditis (primary hypothyroidism). In this paper, we develop an automatic thyroid nodule classification system using a multi-scale vision transformer and image enhancement. Graph equalization is the chosen technique for image enhancement, and in our experiments, we used neural networks with four-layer network nodes. This work presents an enhanced linguistic coverage neuro-fuzzy classifier with chosen features for thyroid disease feature selection diagnosis. The training procedure is optimized, and a multi-scale vision transformer network is employed. Each hop connection in Dense Net now has trainable weight parameters, altering the architecture. Images of thyroid nodules from 508 patients make up the data set for this article. Sets of 80% training and 20% validation and 70% training and 30% validation are created from the data. Simultaneously, we take into account how the number of training iterations, network structure, activation function of network nodes, and other factors affect the classification outcomes.

Results: According to the experimental results, the best number of training iterations is 500, the logistic function is the best activation function, and the ideal network structure is 2500-40-2-1.

Conclusion: K-fold validation and performance comparison with previous research validate the suggested methodology's enhanced effectiveness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613024PMC
http://dx.doi.org/10.3233/THC-240362DOI Listing

Publication Analysis

Top Keywords

multi-scale vision
12
vision transformer
12
maternal thyroid
8
thyroid disease
8
early pregnancy
8
thyroid function
8
image enhancement
8
network nodes
8
number training
8
training iterations
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!