AI Article Synopsis

Article Abstract

Background: The left ventricle segmentation (LVS) is crucial to the assessment of cardiac function. Globally, cardiovascular disease accounts for the majority of deaths, posing a significant health threat. In recent years, LVS has gained important attention due to its ability to measure vital parameters such as myocardial mass, end-diastolic volume, and ejection fraction. Medical professionals realize that manually segmenting data to evaluate these processes takes a lot of time, effort when diagnosing heart diseases. Yet, manually segmenting these images is labour-intensive and may reduce diagnostic accuracy.

Objective/methods: This paper, propose a combination of different deep neural networks for semantic segmentation of the left ventricle based on Tri-Convolutional Networks (Tri-ConvNets) to obtain highly accurate segmentation. CMRI images are initially pre-processed to remove noise artefacts and enhance image quality, then ROI-based extraction is done in three stages to accurately identify the LV. The extracted features are given as input to three different deep learning structures for segmenting the LV in an efficient way. The contour edges are processed in the standard ConvNet, the contour points are processed using Fully ConvNet and finally the noise free images are converted into patches to perform pixel-wise operations in ConvNets.

Results/conclusions: The proposed Tri-ConvNets model achieves the Jaccard indices of 0.9491 ± 0.0188 for the sunny brook dataset and 0.9497 ± 0.0237 for the York dataset, and the dice index of 0.9419 ± 0.0178 for the ACDC dataset and 0.9414 ± 0.0247 for LVSC dataset respectively. The experimental results also reveal that the proposed Tri-ConvNets model is faster and requires minimal resources compared to state-of-the-art models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613063PMC
http://dx.doi.org/10.3233/THC-240062DOI Listing

Publication Analysis

Top Keywords

left ventricle
12
ventricle segmentation
8
based tri-convolutional
8
neural networks
8
manually segmenting
8
proposed tri-convnets
8
tri-convnets model
8
fine grained
4
grained automatic
4
automatic left
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!