Background: Segmentation of retinal fragments like blood vessels, Optic Disc (OD), and Optic Cup (OC) enables the early detection of different retinal pathologies like Diabetic Retinopathy (DR), Glaucoma, etc.
Objective: Accurate segmentation of OD remains challenging due to blurred boundaries, vessel occlusion, and other distractions and limitations. These days, deep learning is rapidly progressing in the segmentation of image pixels, and a number of network models have been proposed for end-to-end image segmentation. However, there are still certain limitations, such as limited ability to represent context, inadequate feature processing, limited receptive field, etc., which lead to the loss of local details and blurred boundaries.
Methods: A multi-dimensional dense attention network, or MDDA-Net, is proposed for pixel-wise segmentation of OD in retinal images in order to address the aforementioned issues and produce more thorough and accurate segmentation results. In order to acquire powerful contexts when faced with limited context representation capabilities, a dense attention block is recommended. A triple-attention (TA) block is introduced in order to better extract the relationship between pixels and obtain more comprehensive information, with the goal of addressing the insufficient feature processing. In the meantime, a multi-scale context fusion (MCF) is suggested for acquiring the multi-scale contexts through context improvement.
Results: Specifically, we provide a thorough assessment of the suggested approach on three difficult datasets. In the MESSIDOR and ORIGA data sets, the suggested MDDA-NET approach obtains accuracy levels of 99.28% and 98.95%, respectively.
Conclusion: The experimental results show that the MDDA-Net can obtain better performance than state-of-the-art deep learning models under the same environmental conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612978 | PMC |
http://dx.doi.org/10.3233/THC-230310 | DOI Listing |
Sci Rep
January 2025
Hydrobiology Lab, National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
The utilization of cyanobacteria toxin-producing blooms for metal ions adsorption has garnered significant attention over the last decade. This study investigates the efficacy of dead cells from Microcystis aeruginosa blooms, collected from agricultural drainage water reservoir, in removing of cadmium, lead, and zinc ions from aqueous solutions, and simultaneously addressing the mitigation of toxin-producing M. aeruginosa bloom.
View Article and Find Full Text PDFSci Rep
January 2025
College of Electrical and Information Engineering, Beihua University, Jilin, 132013, China.
Remote sensing images often suffer from the degradation effects of atmospheric haze, which can significantly impair the quality and utility of the acquired data. A novel dehazing method leveraging generative adversarial networks is proposed to address this challenge. It integrates a generator network, designed to enhance the clarity and detail of hazy images, with a discriminator network that distinguishes between dehazed and real clear images.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea.
Liquid metals (LMs), i.e., metals and alloys that exist in a liquid state at room temperature, have recently attracted considerable attention owing to their electronic and rheological properties useful in various cutting-edge technologies.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Charles Sturt University, Albury-Wodonga, NSW, Albury, New South Wales, 2640, AUSTRALIA.
Bone is a common site for the metastasis of malignant tumors, and Single Photon Emission Computed Tomography (SPECT) is widely used to detect these metastases. Accurate delineation of metastatic bone lesions in SPECT images is essential for developing treatment plans. However, current clinical practices rely on manual delineation by physicians, which is prone to variability and subjective interpretation.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biomedical Engineering, School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China.
The cervical cell classification technique can determine the degree of cellular abnormality and pathological condition, which can help doctors to detect the risk of cervical cancer at an early stage and improve the cure and survival rates of cervical cancer patients. Addressing the issue of low accuracy in cervical cell classification, a deep convolutional neural network A2SDNet121 is proposed. A2SDNet121 takes DenseNet121 as the backbone network.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!