Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper introduces a method for measuring wing motion, deformation, and inertial forces in bio-inspired aircraft research using a camera motion capture system. The method involves placing markers on the wing surface and fitting rigid planes to determine the wing's spatial axis. This allows for describing the wing's rigid motion and obtaining deformation characteristics, such as deflection, twist angle, and gap distance of the forewing and hindwing. An image-based method is proposed for determining wing mass distribution, mass blocks, and mass points for inertial force measurement. The study addresses wing motion, deformation, and inertial force measurement in a real butterfly-like flapping wing vehicle and demonstrates the effectiveness of the approach. The results reveal that inertial forces play a negligible role in the generation of lift peaks and contribute minimal lift during the entire flapping cycle. Furthermore, a transitional phase between downstroke and upstroke is found in flexible wing motion, which has high lift production. This measurement approach offers a rapid and effective solution to experimental challenges in bio-inspired aircraft design and optimization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0207788 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!