A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Measurement of wing motion, deformation, and inertial forces of a biomimetic butterfly. | LitMetric

Measurement of wing motion, deformation, and inertial forces of a biomimetic butterfly.

Rev Sci Instrum

College of Aerospace Engineering, Chongqing University, Chongqing 400044, China.

Published: July 2024

This paper introduces a method for measuring wing motion, deformation, and inertial forces in bio-inspired aircraft research using a camera motion capture system. The method involves placing markers on the wing surface and fitting rigid planes to determine the wing's spatial axis. This allows for describing the wing's rigid motion and obtaining deformation characteristics, such as deflection, twist angle, and gap distance of the forewing and hindwing. An image-based method is proposed for determining wing mass distribution, mass blocks, and mass points for inertial force measurement. The study addresses wing motion, deformation, and inertial force measurement in a real butterfly-like flapping wing vehicle and demonstrates the effectiveness of the approach. The results reveal that inertial forces play a negligible role in the generation of lift peaks and contribute minimal lift during the entire flapping cycle. Furthermore, a transitional phase between downstroke and upstroke is found in flexible wing motion, which has high lift production. This measurement approach offers a rapid and effective solution to experimental challenges in bio-inspired aircraft design and optimization.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0207788DOI Listing

Publication Analysis

Top Keywords

wing motion
16
motion deformation
12
deformation inertial
12
inertial forces
12
bio-inspired aircraft
8
inertial force
8
force measurement
8
motion
6
wing
6
inertial
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!