AI Article Synopsis

  • GLABRA2 (GL2) is a key transcription factor in Arabidopsis that regulates specialized cell types in the epidermis.
  • Mutations in the nuclear localization sequence (NLS) of GL2 disrupt its nuclear transport, causing loss-of-function phenotypes.
  • Interactions between GL2 and importin α isoforms are essential for GL2's nuclear localization and epidermal cell differentiation, as shown through various experimental methods.

Article Abstract

GLABRA2 (GL2), a class IV homeodomain leucine-zipper (HD-Zip IV) transcription factor from Arabidopsis, is a developmental regulator of specialized cell types in the epidermis. GL2 contains a monopartite nuclear localization sequence (NLS) that is conserved in most HD-Zip IV members across the plants. We demonstrate that NLS mutations affect nuclear transport and result in a loss-of-function phenotypes. NLS fusions to enhanced yellow fluorescent protein (EYFP) show that it is sufficient for nuclear localization in roots and trichomes. Despite partial overlap of the NLS with the homeodomain, genetic dissection indicates that nuclear localization and DNA binding are separable functions. Affinity purification of GL2 from plants followed by MS-based proteomics identified importin α (IMPα) isoforms as potential GL2 interactors. NLS structural prediction and molecular docking studies with IMPα-3 revealed major interacting residues. Cytosolic yeast two-hybrid assays and co-immunoprecipitation experiments with recombinant proteins verified NLS-dependent interactions between GL2 and several IMPα isoforms. IMPα triple mutants (impα-1,2,3) exhibit abnormal trichome formation and defects in GL2 nuclear localization in trichomes, consistent with tissue-specific and redundant functions of IMPα isoforms. Taken together, our findings provide mechanistic evidence for IMPα-dependent nuclear localization of GL2 in Arabidopsis, a process that is critical for cell type differentiation of the epidermis.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erae326DOI Listing

Publication Analysis

Top Keywords

nuclear localization
24
impα isoforms
12
hd-zip transcription
8
transcription factor
8
nuclear
7
gl2
7
localization
5
nls
5
localization arabidopsis
4
arabidopsis hd-zip
4

Similar Publications

Molecular imaging using positron emission tomography (PET) provides sensitive detection and mapping of molecular targets. While cancer-associated fibroblasts and integrins have been proposed as targets for imaging of pancreatic ductal adenocarcinoma (PDAC), herein, spatial transcriptomics and proteomics of human surgical samples are applied to select PDAC targets. We find that selected cancer cell surface markers are spatially correlated and provide specific cancer localization, whereas the spatial correlation between cancer markers and immune-related or fibroblast markers is low.

View Article and Find Full Text PDF

Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. However, this is challenging in neuronal projections because of their polarized morphology and constant synaptic proteome remodeling. Using high-resolution fluorescence microscopy, we discover that hippocampal and spinal cord motor neurons of mouse and human origin localize a subset of chaperone mRNAs to their dendrites and use microtubule-based transport to increase this asymmetric localization following proteotoxic stress.

View Article and Find Full Text PDF

Mechanical Force-Induced cGAS Activation in Carcinoma Cells Facilitates Splenocytes into Liver to Drive Metastasis.

Adv Sci (Weinh)

December 2024

Department of General Surgery, National-Local Joint Engineering Research Center of Biodiagnostic & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.

Liver metastasis is the main cause of cancer-related mortality. During the metastasis process, circulating carcinoma cells hardly pass through narrow capillaries, leading to nuclear deformation. However, the effects of nuclear deformation and its underlying mechanisms on metastasis need further study.

View Article and Find Full Text PDF

TabHLH489 suppresses nitrate signaling by inhibiting the function of TaNLP7-3A in wheat.

J Integr Plant Biol

December 2024

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, 266237, China.

Nitrate not only serves as the primary nitrogen source for terrestrial plants but also serves as a critical signal in regulating plant growth and development. Understanding how plant responses to nitrate availability is essential for improving nitrogen use efficiency in crops. Herein, we demonstrated that the basic helix-loop-helix (bHLH) transcription factor TabHLH489 plays a crucial negative regulatory role in wheat nitrate signaling.

View Article and Find Full Text PDF

Background: Coronary Artery Disease (CAD) is a leading cause of mortality, with an increasing number of patients affected by coronary artery stenosis each year. Coronary angiography (CAG) is commonly employed as the definitive diagnostic tool for identifying coronary artery stenosis. Physician Visual Assessment (PVA) is often used as the primary method to determine the need for further intervention, but its subjective nature poses challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!