Low-dimensional photoconductors have extraordinarily high photoresponse and gain, which can be modulated by gate voltages as shown in literature. However, the physics of gate modulation remains elusive. In this work, the physics of gate modulation in silicon nanowire photoconductors with the analytical photoresponse equations is investigated. It is found that the impact of gate voltage varies vastly for nanowires with different size. For the wide nanowires that cannot be pinched off by high gate voltage, it is found that the photoresponses are enhanced by at least one order of magnitude due to the gate-induced electric passivation. For narrow nanowires that starts with a pinched-off channel, the gate voltage has no electric passivation effect but increases the potential barrier between source and drain, resulting in a decrease in dark and photocurrent. For the nanowires with an intermediate size, the channel is continuous but can be pinched off by a high gate voltage. The photoresponsivity and photodetectivity is maximized during the transition from the continuous channel to the pinched-off one. This work provides important insights on how to design high-performance photoconductors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202402682DOI Listing

Publication Analysis

Top Keywords

gate voltage
16
nanowire photoconductors
8
physics gate
8
gate modulation
8
pinched high
8
high gate
8
electric passivation
8
gate
7
analytical photoresponses
4
photoresponses gated
4

Similar Publications

In this paper, a new label-free DNA nanosensor based on a top-gated (TG) metal-ferroelectric-metal (MFM) graphene nanoribbon field-effect transistor (TG-MFM GNRFET) is proposed through a simulation approach. The DNA sensing principle is founded on the dielectric modulation concept. The computational method employed to evaluate the proposed nanobiosensor relies on the coupled solutions of a rigorous quantum simulation with the Landau-Khalatnikov equation, considering ballistic transport conditions.

View Article and Find Full Text PDF

As electronics advance toward higher performance and adaptability in extreme environments, traditional metal-oxide-semiconductor field-effect transistors (MOSFETs) face challenges due to physical constraints such as Boltzmann's law and short-channel effects. Nanoscale air channel transistors (NACTs) present a promising alternative, leveraging their vacuum-like channel and Fowler-Nordheim tunneling characteristics. In this study, a novel circular gate NACT (CG-NACT) is purposed, fabricated on a 4-inch silicon-based wafer using a CMOS-compatible process.

View Article and Find Full Text PDF

Antibiotic residue detection by novel photoelectrochemical extended-gate field-effect transistor sensor.

J Hazard Mater

December 2024

College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092,  China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:

Residual antibiotics in the environment may pose threats to both ecological system and public health, necessitating the development of efficient analytical strategy for monitoring and control. This study proposes a photoelectrochemical extended-gate field-effect transistor (PEGFET) sensor for specific and sensitive detection of kanamycin. The sensor utilizes ITO glass as the extended gate electrode (photoelectrode) and titanium dioxide as the photosensitive material.

View Article and Find Full Text PDF

Dual-Gate Modulation in a Quantum Dots/MoS Thin-Film Transistor Gas Sensor.

ACS Sens

December 2024

School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.

Mastering the surface chemistry of quantum dots (QDs) has enabled a remarkable gas-sensing response as well as impressive air stability. To overcome the intrinsic receptor-transducer mismatch of QDs, PbS QDs used as sensitive NO receptors are spin-coated on top of a few-layer MoS and incorporated into a thin-film transistor (TFT) gas sensor. This architecture enables the separation of the electron transduction function from the chemical reception function.

View Article and Find Full Text PDF

Reconfigurable Phototransistors Driven by Gate-Dependent Carrier Modulation in WSe/TaNiSe van der Waals Heterojunctions.

ACS Nano

December 2024

MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Engineering Research Center for Quantum Dot Display, School of Materials Science and Engineering, Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.

Reconfigurable field-effect transistors (RFETs) offer notable benefits on electronic and optoelectronic logic circuits, surpassing the integration, flexibility, and cost-efficiency of conventional complementary metal-oxide semiconductor transistors. The low on/off current ratio of these transistors remains a considerable impediment in the practical application of RFETs. To overcome these limitations, a van der Waals heterojunction (vdWH) transistor composed of WSe/TaNiSe has been proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!