AI Article Synopsis

Article Abstract

This study investigates mechanochemical synthesis and cation-disordering mechanism of wurtzite-type LiVO (LVO), highlighting its promise as a high-performance anode material for lithium-ion batteries and hybrid supercapacitors. Mechanochemical treatment of pristine LVO using a high-energy ball mill results in a "pure cation-disordered" LVO phase, allowing for meticulous analysis of cation arrangement. The X-ray and neutron diffraction study demonstrates progressive loss of order in LVO crystal with increasing milling duration. High-resolution transmission electron microscopy reveals disrupted lattice fringes, indicating cationic misalignment. Pair-distribution function analysis confirms loss of cation arrangements and the presence of short-range order. Combination of these multiple analytical techniques achieves a comprehensive understanding of cation regularity and clearly demonstrates order/disorder dichotomy in cation-disordered materials, ranging from short (<8 Å) to middle-long range (8-30 Å), using an integrated superstructure model of the cation-disordered LVO crystals. Electrochemical testing reveals that mechanochemically treated LVO exhibits superior rate capability, with a 70% capacity retention at a high current density of 50C-rate. Lithium diffusion coefficient measurements demonstrate enhanced lithium-ion mobility in the mechanochemically treated LVO, attributed to cation-disordering effect. These findings provide valuable insights into mechanochemical cation-disordering in LVO, presenting its potential as an efficient anode material for lithium-ion-based electrochemical energy storage.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202405259DOI Listing

Publication Analysis

Top Keywords

anode material
8
comprehensive investigation
4
investigation crystal
4
crystal structure
4
structure cation-disordered
4
cation-disordered livo
4
livo high-rate
4
high-rate anode
4
material unveiling
4
unveiling dichotomy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!