Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
With the continuous advancement of wearable technology and advanced medical monitoring, there is an increasing demand for electronic devices that can adapt to complex environments and have high perceptual sensitivity. Here, a novel artificial injury perception device based on an Ag/HfO/ITO/PET flexible memristor is designed to address the limitations of current technologies in multimodal perception and environmental adaptability. The memristor exhibits excellent resistive switching (RS) performance and mechanical flexibility under different bending angles (BAs), temperatures, humid environment, and repetitive folding conditions. Further, the device demonstrates the multimodal perception and conversion capabilities toward voltage, mechanical, and thermal stimuli through current response tests under different conditions, enabling not only the simulation of artificial injury perception but also holds promise for monitoring and controlling the movement of robotic arms. Moreover, the logical operation capability of the memristor-based reconfigurable logic (MRL) gates is also demonstrated, proving the device has great potential applications with sensing, storage, and memory functions. Overall, this study not only provides a direction for the development of the next-generation flexible multimodal sensors, but also has significant implications for technological advancements in many fields such as robotic arms, electronic skin (e-skin), and medical monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202402588 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!