A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Joint - Space Image Reconstruction and Data Fitting for Chemical Exchange Saturation Transfer Magnetic Resonance Imaging. | LitMetric

Joint - Space Image Reconstruction and Data Fitting for Chemical Exchange Saturation Transfer Magnetic Resonance Imaging.

Tomography

Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA.

Published: July 2024

Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is a novel MRI technology to image certain compounds at extremely low concentrations. Long acquisition time to measure signals at a set of offset frequencies of the Z-spectra and to repeat measurements to reduce noise pose significant challenges to its applications. This study explores correlations of CEST MR images along the spatial and Z-spectral dimensions to improve MR image quality and robustness of magnetization transfer ratio (MTR) asymmetry estimation via a joint -ω reconstruction model. The model was formulated as an optimization problem with respect to MR images at all frequencies ω, while incorporating regularizations along the spatial and spectral dimensions. The solution was subject to a self-consistency condition that the Z-spectrum of each pixel follows a multi-peak data fitting model corresponding to different CEST pools. The optimization problem was solved using the alternating direction method of multipliers. The proposed joint reconstruction method was evaluated on a simulated CEST MRI phantom and semi-experimentally on choline and iopamidol phantoms with added Gaussian noise of various levels. Results demonstrated that the joint reconstruction method was more tolerable to noise and reduction in number of offset frequencies by improving signal-to-noise ratio (SNR) of the reconstructed images and reducing uncertainty in MTR asymmetry estimation. In the choline and iopamidol phantom cases with 10.5% noise in the measurement data, our method achieved an averaged SNR of 31.0 dB and 32.2 dB compared to the SNR of 24.7 dB and 24.4 dB in the conventional reconstruction approach. It reduced uncertainty of the MTR asymmetry estimation over all regions of interest by 54.4% and 43.7%, from 1.71 and 2.38 to 0.78 and 1.71, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11280605PMC
http://dx.doi.org/10.3390/tomography10070085DOI Listing

Publication Analysis

Top Keywords

mtr asymmetry
12
asymmetry estimation
12
data fitting
8
chemical exchange
8
exchange saturation
8
saturation transfer
8
magnetic resonance
8
resonance imaging
8
offset frequencies
8
optimization problem
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!