A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Systematic Microfluidic Study of the Use of Diluted Silica Sols to Enhance Oil Displacement. | LitMetric

A Systematic Microfluidic Study of the Use of Diluted Silica Sols to Enhance Oil Displacement.

Nanomaterials (Basel)

Laboratory of Physical and Chemical Technologies for the Development of Hard-to-Recover Hydrocarbon Reserves, Siberian Federal University, 660041 Krasnoyarsk, Russia.

Published: July 2024

The paper presents the results of a systematic microfluidic study of the application of nanosuspensions for enhanced oil recovery. For the first time, approximately a dozen nanosuspensions prepared by the dilution of silica sols as displacement fluids were considered. The concentration of nanoparticles in the suspensions varied from 0.125 to 2 wt%, and their size ranged from 10 to 35 nm. Furthermore, the silica sols under consideration differed in their compositions of functional groups and pH. The effects of concentration, nanoparticle size, fluid flow rate, and the viscosity of the displaced oil were investigated using microfluidic technology. The microfluidic experiments demonstrated that the application of nanosuspensions for water flooding has significant potential. The efficiency of oil displacement by nanosuspensions was found to increase significantly (up to 30%) with the increasing concentration and decreasing average size of nanoparticles. The application of nanosuspensions for the enhancement of oil recovery is most appropriate for reservoirs with highly viscous oil.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11280169PMC
http://dx.doi.org/10.3390/nano14141233DOI Listing

Publication Analysis

Top Keywords

silica sols
12
application nanosuspensions
12
systematic microfluidic
8
microfluidic study
8
oil displacement
8
oil recovery
8
oil
6
nanosuspensions
5
study diluted
4
diluted silica
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!