In the future, DW memory will replace conventional storage memories with high storage capacity and fast read/write speeds. The only failure in DW memory arises from DW thermal fluctuations at pinning sites. This work examines, through calculations, the parameters that might help control DW thermal stability at the pinning sites. It is proposed to design a new scheme using a stepped area of a certain depth () and length (). The study reveals that DW thermal stability is highly dependent on the geometry of the pinning area ( and λ), magnetic properties such as saturation magnetization () and magnetic anisotropy energy (), and the dimensions of the nanowires. For certain values of and , DWs remain stable at temperatures over 500 K, which is beneficial for memory applications. Higher DW thermal stability is also achieved by decreasing nanowire thickness to less than 10 nm, making DW memories stable below 800 K. Finally, our results help to construct DW memory nanodevices with nanodimensions less than a 40 nm width and less than a 10 nm thickness with high DW thermal stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11279391 | PMC |
http://dx.doi.org/10.3390/nano14141202 | DOI Listing |
Vaccines (Basel)
December 2024
Laboratory of Molecular Studies and Experimental Therapy-LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil.
Background/objectives: DNA vaccines are rapidly produced and adaptable to different pathogens, but they face considerable challenges regarding stability and delivery to the cellular target. Thus, effective delivery methods are essential for the success of these vaccines. Here, we evaluated the efficacy of capsules derived from the cell wall of the yeast as a delivery system for DNA vaccines.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea.
: The development of a five-in-one vaccine microneedle patch (five-in-one MN patch) aims to address challenges in administering vaccines against Diphtheria (DT), Tetanus (TT), Pertussis (wP), Hepatitis B (HBsAg), and type b (Hib). Combining multiple vaccines into a single patch offers a novel solution to improve vaccine accessibility, stability, and delivery efficiency, particularly in resource-limited settings. : The five-in-one MN patch consists of four distinct microneedle arrays: DT and TT vaccines are coated together on one array, while wP, HepB, and Hib vaccines are coated separately on individual arrays.
View Article and Find Full Text PDFPharmaceutics
December 2024
Faculty of Pharmacy, "Victor Babeş" University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania.
Olmesartan medoxomil (OLM) is the prodrug of olmesartan, an angiotensin II type 1 receptor blocker that has antihypertensive and antioxidant activities and renal protective properties. It exhibits low water solubility, which leads to poor bioavailability and limits its clinical potential. To improve the solubility of OLM, a host-guest inclusion complex (IC) between heptakis(2,6-di-O-methyl)-β-cyclodextrin (DMβCD) and the drug substance was obtained.
View Article and Find Full Text PDFPharmaceutics
November 2024
Merck Life Science KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany.
Melt-based 3D printing technologies are currently extensively evaluated for research purposes as well as for industrial applications. Classical approaches often require intermediates, which can pose a risk to stability and add additional complexity to the process. The Advanced Melt Drop Deposition (AMDD) technology, is a 3D printing process that combines the principles of melt extrusion with pressure-driven ejection, similar to injection molding.
View Article and Find Full Text PDFPharmaceutics
November 2024
Merck Life Science KGaA, 64293 Darmstadt, Germany.
Background/objectives: This project aims to provide valuable insights into the formulation of orodispersible films (ODFs) for the delivery of PROTAC ARV-110. The primary objective of this drug delivery formulation is to enhance the solubility of PROTAC ARV-110, which faces significant challenges due to the low solubility of this active pharmaceutical ingredient, as it belongs to a molecular class that is considered to exceed the "Rule of Five".
Methods: We employed the concept of developing a rapidly disintegrating ODF to enhance the solubility of PROTAC ARV-110, utilizing polyvinyl alcohol as the polymer of choice.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!