Thermal Effects on Domain Wall Stability at Magnetic Stepped Nanowire for Nanodevices Storage.

Nanomaterials (Basel)

Department of Basic and Applied Sciences, A'Sharqiyah University, P.O. Box 42, Ibra P.C 400, Oman.

Published: July 2024

In the future, DW memory will replace conventional storage memories with high storage capacity and fast read/write speeds. The only failure in DW memory arises from DW thermal fluctuations at pinning sites. This work examines, through calculations, the parameters that might help control DW thermal stability at the pinning sites. It is proposed to design a new scheme using a stepped area of a certain depth () and length (). The study reveals that DW thermal stability is highly dependent on the geometry of the pinning area ( and λ), magnetic properties such as saturation magnetization () and magnetic anisotropy energy (), and the dimensions of the nanowires. For certain values of and , DWs remain stable at temperatures over 500 K, which is beneficial for memory applications. Higher DW thermal stability is also achieved by decreasing nanowire thickness to less than 10 nm, making DW memories stable below 800 K. Finally, our results help to construct DW memory nanodevices with nanodimensions less than a 40 nm width and less than a 10 nm thickness with high DW thermal stability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11279391PMC
http://dx.doi.org/10.3390/nano14141202DOI Listing

Publication Analysis

Top Keywords

thermal stability
16
pinning sites
8
thermal
6
stability
5
thermal effects
4
effects domain
4
domain wall
4
wall stability
4
stability magnetic
4
magnetic stepped
4

Similar Publications

Background/objectives: DNA vaccines are rapidly produced and adaptable to different pathogens, but they face considerable challenges regarding stability and delivery to the cellular target. Thus, effective delivery methods are essential for the success of these vaccines. Here, we evaluated the efficacy of capsules derived from the cell wall of the yeast as a delivery system for DNA vaccines.

View Article and Find Full Text PDF

: The development of a five-in-one vaccine microneedle patch (five-in-one MN patch) aims to address challenges in administering vaccines against Diphtheria (DT), Tetanus (TT), Pertussis (wP), Hepatitis B (HBsAg), and type b (Hib). Combining multiple vaccines into a single patch offers a novel solution to improve vaccine accessibility, stability, and delivery efficiency, particularly in resource-limited settings. : The five-in-one MN patch consists of four distinct microneedle arrays: DT and TT vaccines are coated together on one array, while wP, HepB, and Hib vaccines are coated separately on individual arrays.

View Article and Find Full Text PDF

Olmesartan medoxomil (OLM) is the prodrug of olmesartan, an angiotensin II type 1 receptor blocker that has antihypertensive and antioxidant activities and renal protective properties. It exhibits low water solubility, which leads to poor bioavailability and limits its clinical potential. To improve the solubility of OLM, a host-guest inclusion complex (IC) between heptakis(2,6-di-O-methyl)-β-cyclodextrin (DMβCD) and the drug substance was obtained.

View Article and Find Full Text PDF

Melt-based 3D printing technologies are currently extensively evaluated for research purposes as well as for industrial applications. Classical approaches often require intermediates, which can pose a risk to stability and add additional complexity to the process. The Advanced Melt Drop Deposition (AMDD) technology, is a 3D printing process that combines the principles of melt extrusion with pressure-driven ejection, similar to injection molding.

View Article and Find Full Text PDF

Background/objectives: This project aims to provide valuable insights into the formulation of orodispersible films (ODFs) for the delivery of PROTAC ARV-110. The primary objective of this drug delivery formulation is to enhance the solubility of PROTAC ARV-110, which faces significant challenges due to the low solubility of this active pharmaceutical ingredient, as it belongs to a molecular class that is considered to exceed the "Rule of Five".

Methods: We employed the concept of developing a rapidly disintegrating ODF to enhance the solubility of PROTAC ARV-110, utilizing polyvinyl alcohol as the polymer of choice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!