Globally, fresh vegetables or minimally processed salads have been implicated in several foodborne disease outbreaks. This work studied the effect of FMCC-B281 cells (F) and its supernatant (S) on spoilage and on the fate of and O157:H7 on fresh-cut ready-to-eat (RTE) salads during storage. Also, Fourier transform infrared (FTIR) and multispectral imaging (MSI) analysis were used as rapid and non-destructive techniques to estimate the microbiological status of the samples. Fresh romaine lettuce, rocket cabbage, and white cabbage were used in the present study and were inoculated with and the two pathogens. The strains were grown at 37 °C for 24 h in MRS and BHI broths, respectively, and then were centrifuged to collect the supernatant and the pellet (cells). Cells (F, ~5 log CFU/g), the supernatant (S), and a control (C, broth) were used to spray the leaves of each fresh vegetable that had been previously contaminated (sprayed) with the pathogen (3 log CFU/g). Subsequently, the salads were packed under modified atmosphere packaging (10%CO/10%O/80%N) and stored at 4 and 10 °C until spoilage. During storage, microbiological counts and pH were monitored in parallel with FTIR and MSI analyses. The results showed that during storage, the population of the pathogens increased for lettuce and rocket independent of the treatment. For cabbage, pathogen populations remained stable throughout storage. Regarding the spoilage microbiota, the population was lower in the F samples, while no differences in the populations of and yeasts/molds were observed for the C, F, and S samples stored at 4 °C. According to sensory evaluation, the shelf-life was shorter for the control samples in contrast to the S and F samples, where their shelf-life was elongated by 1-2 days. Initial pH values were ca. 6.0 for the three leafy vegetables. An increase in the pH of ca. 0.5 values was recorded until the end of storage at both temperatures for all cases of leafy vegetables. FTIR and MSI analyses did not satisfactorily lead to the estimation of the microbiological quality of salads. In conclusion, the applied bioprotective strain () can elongate the shelf-life of the RTE salads without an effect on pathogen growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11280402 | PMC |
http://dx.doi.org/10.3390/pathogens13070557 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!