AI Article Synopsis

  • - This study investigates the molecular differences between breast cancer survivors and healthy controls using advanced techniques like genomics and metabolomics, involving a total of 100 participants.
  • - Findings revealed that breast cancer survivors had higher polygenic risk scores and notable differences in metabolites, particularly lower Omega-3 Index levels, compared to healthy individuals.
  • - The research contributes significant data that can help identify patterns in breast cancer survivorship, with the potential to inform new treatment strategies and improve the quality of life for those affected.

Article Abstract

Breast cancer imposes a significant burden globally. While the survival rate is steadily improving, much remains to be elucidated. This observational, single time point, multiomic study utilizing genomics, proteomics, targeted and untargeted metabolomics, and metagenomics in a breast cancer survivor (BCS) and age-matched healthy control cohort (N = 100) provides deep molecular phenotyping of breast cancer survivors. In this study, the BCS cohort had significantly higher polygenic risk scores for breast cancer than the control group. Carnitine and hexanoyl carnitine were significantly different. Several bile acid and fatty acid metabolites were significantly dissimilar, most notably the Omega-3 Index (O3I) (significantly lower in BCS). Proteomic and metagenomic analyses identified group and pathway differences, which warrant further investigation. The database built from this study contributes a wealth of data on breast cancer survivorship where there has been a paucity, affording the ability to identify patterns and novel insights that can drive new hypotheses and inform future research. Expansion of this database in the treatment-naïve, newly diagnosed, controlling for treatment confounders, and through the disease progression, can be leveraged to profile and contextualize breast cancer and breast cancer survivorship, potentially leading to the development of new strategies to combat this disease and improve the quality of life for its victims.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11279123PMC
http://dx.doi.org/10.3390/metabo14070396DOI Listing

Publication Analysis

Top Keywords

breast cancer
32
breast
8
cancer
8
cancer survivors
8
cancer survivorship
8
multiomics molecular
4
molecular atlas
4
atlas breast
4
survivors breast
4
cancer imposes
4

Similar Publications

Background: Thyroid Hormones (THs) critically impact human cancer. Although endowed with both tumor-promoting and inhibiting effects in different cancer types, excess of THs has been linked to enhanced tumor growth and progression. Breast cancer depends on the interaction between bulk tumor cells and the surrounding microenvironment in which mesenchymal stem cells (MSCs) exert powerful pro-tumorigenic activities.

View Article and Find Full Text PDF

The Role of NF-κB/MIR155HG in Regulating the Stemness and Radioresistance in Breast Cancer Stem Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.

Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.

View Article and Find Full Text PDF

Update on the Progress of Musashi-2 in Malignant Tumors.

Front Biosci (Landmark Ed)

January 2025

Department of Hepatobiliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China.

Since the discovery of the Musashi (MSI) protein, its ability to affect the mitosis of Drosophila progenitor cells has garnered significant interest among scientists. In the following 20 years, it has lived up to expectations. A substantial body of evidence has demonstrated that it is closely related to the development, metastasis, migration, and drug resistance of malignant tumors.

View Article and Find Full Text PDF

Tryptophan catabolism is a central pathway in many cancers, serving to sustain an immunosuppressive microenvironment. The key enzymes involved in this tryptophan metabolism such as indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are reported as promising novel targets in cancer immunotherapy. IDO1 and TDO overexpression in TNBC cells promote resistance to cell death, proliferation, invasion, and metastasis.

View Article and Find Full Text PDF

Socio-economic inequalities in second primary cancer incidence: A competing risks analysis of women with breast cancer in England between 2000 and 2018.

Int J Cancer

January 2025

Inequalities in Cancer Outcomes Network (ICON) group, Department of Health Services Research and Policy, Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, London, UK.

We aimed to investigate socio-economic inequalities in second primary cancer (SPC) incidence among breast cancer survivors. Using Data from cancer registries in England, we included all women diagnosed with a first primary breast cancer (PBC) between 2000 and 2018 and aged between 18 and 99 years and followed them up from 6 months after the PBC diagnosis until a SPC event, death, or right censoring, whichever came first. We used flexible parametric survival models adjusting for age and year of PBC diagnosis, ethnicity, PBC tumour stage, comorbidity, and PBC treatments to model the cause-specific hazards of SPC incidence and death according to income deprivation, and then estimated standardised cumulative incidences of SPC by deprivation, taking death as the competing event.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!