Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Conventional diagnostic tools for prostate cancer (PCa), such as prostate-specific antigen (PSA), transrectal ultrasound (TRUS), digital rectal examination (DRE), and tissue biopsy face, limitations in individual risk stratification due to invasiveness or reliability issues. Liquid biopsy is a less invasive and more accurate alternative. Metabolomic analysis of extracellular vesicles (EVs) holds a promise for detecting non-genetic alterations and biomarkers in PCa diagnosis and risk assessment. The current research gap in PCa lies in the lack of accurate biomarkers for early diagnosis and real-time monitoring of cancer progression or metastasis. Establishing a suitable approach for observing dynamic EV metabolic alterations that often occur earlier than being detectable by other omics technologies makes metabolomics valuable for early diagnosis and monitoring of PCa. Using four distinct metabolite extraction approaches, the metabolite cargo of PC3-derived large extracellular vesicles (lEVs) was evaluated using a combination of methanol, cell shearing using microbeads, and size exclusion filtration, as well as two fractionation chemistries (pHILIC and C18 chromatography) that are also examined. The unfiltered methanol-microbeads approach (MB-UF), followed by pHILIC LC-MS/MS for EV metabolite extraction and analysis, is effective. Identified metabolites such as L-glutamic acid, pyruvic acid, lactic acid, and methylmalonic acid have important links to PCa and are discussed. Our study, for the first time, has comprehensively evaluated the extraction and separation methods with a view to downstream sample integrity across omics platforms, and it presents an optimised protocol for EV metabolomics in PCa biomarker discovery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11279087 | PMC |
http://dx.doi.org/10.3390/metabo14070367 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!