The present review provides a comprehensive examination of the intricate dynamics between α-synuclein, a protein crucially involved in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease and multiple system atrophy, and endogenously-produced bioactive lipids, which play a pivotal role in neuroinflammation and neurodegeneration. The interaction of α-synuclein with bioactive lipids is emerging as a critical factor in the development and progression of neurodegenerative and neuroinflammatory diseases, offering new insights into disease mechanisms and novel perspectives in the identification of potential biomarkers and therapeutic targets. We delve into the molecular pathways through which α-synuclein interacts with biological membranes and bioactive lipids, influencing the aggregation of α-synuclein and triggering neuroinflammatory responses, highlighting the potential of bioactive lipids as biomarkers for early disease detection and progression monitoring. Moreover, we explore innovative therapeutic strategies aimed at modulating the interaction between α-synuclein and bioactive lipids, including the development of small molecules and nutritional interventions. Finally, the review addresses the significance of the gut-to-brain axis in mediating the effects of bioactive lipids on α-synuclein pathology and discusses the role of altered gut lipid metabolism and microbiota composition in neuroinflammation and neurodegeneration. The present review aims to underscore the potential of targeting α-synuclein-lipid interactions as a multifaceted approach for the detection and treatment of neurodegenerative and neuroinflammatory diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11278689 | PMC |
http://dx.doi.org/10.3390/metabo14070352 | DOI Listing |
Background: In Alzheimer's disease (AD), histone acetylation is disrupted, suggesting loss of transcriptional control. Moreover, converging evidence suggests an age- and AD-dependent loss of transcription controlled by all-trans-retinoic acid (ATRA), the bioactive metabolite of vitamin A (VA). Antioxidant depletion causes oxidative stress (OS).
View Article and Find Full Text PDFPharm Dev Technol
January 2025
Univ Angers, INSERM, CNRS, MINT, SFR ICAT, France.
This work explores two methods to encapsulate Thymoquinone (TQ) into lipid nanocapsules (LNCs) for oral administration. TQ was added during the phase inversion temperature method (TQ-LNCs-1) or to unload LNCs dispersion (TQ-LNCs-2). LNCs were evaluated for mean diameter, polydispersity index (PDI), ζ-potential, drug loading (DL), drop tensiometer, storage stability, stability in simulated gastrointestinal fluids (SGIF), and intestinal permeability across Caco-2 cells.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Department of Cardiology, The Seventh Affiliated Hospital of Southern Medical University, Southern Medical University, Foshan, 528244, People's Republic of China.
Purpose: The Baolier capsule (BLEC) is a proprietary Mongolian medicine administered for treating hypercholesterolemia and atherosclerosis (AS). However, the therapeutic effects, primary bioactive ingredients, and potential mechanisms underlying hypercholesterolemia and AS remain unclear. This study aimed to investigate the pharmacological effects, principal active ingredients, and mechanisms of BLEC against hypercholesterolemia and AS.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China.
Human cells generate a bulk of aldehydes during lipid peroxidation (LPO), influencing critical cellular processes, such as oxidative stress, protein modification, and DNA damage. Enals, highly reactive α,β-unsaturated aldehydic metabolites, are implicated in various human pathologies, especially neurodegenerative disorders, cancer, and cardiovascular diseases. Despite their importance, endogenous enals remain poorly characterized, primarily due to their instability and low abundance.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, 390-8621, Japan.
Lysophosphatidylethanolamine (LPE) is a bioactive lipid mediator involved in diverse cellular functions. In this study, we investigated the effects of three LPE species, 1-palmitoyl LPE (16:0 LPE), 1-stearoyl LPE (18:0 LPE), and 1-oleoyl LPE (18:1 LPE) on pre-osteoblast MC3T3-E1 cells. All LPE species stimulated cell proliferation and activated the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) 1/2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!