The CO absorption flux while using monoethanolamide (MEA) solution in a spiral-wired channel was significantly enhanced by optimizing both the descending and ascending spiral ring pitch configurations within the filled channel. In this study, two distinct spiral ring pitch configurations were integrated into concentric circular membrane contactors to augment CO absorption flux. Spiral rods were strategically inserted to mitigate concentration polarization effects, thereby reducing mass transfer boundary layers and increasing turbulence intensity. A theoretical one-dimensional model was developed to predict absorption flux and concentration distributions across varying MEA absorbent flow rates, CO feed flow rates, and inlet CO concentrations in the gas feed. Theoretical predictions of absorption flux improvement were validated against experimental results, demonstrating favorable agreement for both ascending and descending spiral ring pitch operations. Interestingly, the results indicated that descending spiral ring pitch operations achieved higher turbulent intensity compared to ascending configurations, thereby alleviating concentration polarization resistance and enhancing CO absorption flux with reduced polarization effects. Specifically, under conditions of a 40% inlet CO concentration and 5 cm/s MEA feed flow rate, a notable 83.69% enhancement in absorption flux was achieved compared to using an empty channel configuration. Moreover, a generalized expression for the Sherwood number was derived to predict the mass transfer coefficient for CO absorption in concentric circular membrane contactors, providing a practical tool for performance estimation. The economic feasibility of the spiral-wired module was also assessed by evaluating both absorption flux improvement and incremental power consumption. Overall, these findings underscore the effectiveness of optimizing spiral ring pitch configurations in enhancing CO absorption flux, offering insights into improving the efficiency and economic viability of CO capture technologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11279012 | PMC |
http://dx.doi.org/10.3390/membranes14070147 | DOI Listing |
Nanotheranostics
January 2025
Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA.
In treating type 2 diabetes, avoiding glucose reabsorption (glucotoxicity) and managing hyperglycemia are also important. A metabolic condition known as diabetes (type-2) is characterized by high blood sugar levels in comparison to normal Bilosomes (BLs) containing Dapagliflozin (Dapa) were formulated, optimized, and tested for oral therapeutic efficacy in the current investigation. Used the Box Behnken design to optimize the Dapa-BLs, formulated via a thin-film hydration technique.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Automotive Engineering, Jining Polytechnic, Jining 272103, China.
In this work CS-SDAEM polymer brushes with long-chain structure were synthesized, and TiO/CS-SDAEM nanoparticles were prepared by modifying them on the TiO surface. The prepared modified membrane can effectively degrade dyes through photocatalysis and can reduce the contamination rate of the membrane during use. The separation membrane achieves efficient removal of contamination by self-cleaning.
View Article and Find Full Text PDFArch Pharm (Weinheim)
January 2025
European Institute for Molecular Imaging (EIMI), University of Muenster, Muenster, Germany.
The P2X4 receptor (P2X4R), a ligand-gated ion channel activated by ATP, plays a critical role in neuroinflammation, chronic pain, and cancer progression, making it a promising therapeutic target. In this study, we explored the design and synthesis of piperazine-based P2X4R antagonists, building on the structural framework of paroxetine. A series of over 35 compounds were synthesized to investigate structure-activity relationships (SARs) in a Ca²⁺-flux assay for P2X4R antagonistic activity.
View Article and Find Full Text PDFWater Res
December 2024
Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. Electronic address:
Calcium (Ca)-enhanced organic matter (OM) fouling of nanofiltration (NF) membranes leads to reduced flux during desalination and requires frequent cleaning. Fouling mechanisms are not fully understood, which limits the development of targeted fouling control methods. This study employed synchrotron-based X-ray fluorescence (XRF) and X-ray absorption near-edge structure (XANES) spectroscopy to quantify the spatial distribution and mass of Ca deposition as well as changes in the Ca coordination environment characteristic of specific fouling mechanisms, respectively.
View Article and Find Full Text PDFWater Res
December 2024
School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, Shanghai, PR China. Electronic address:
Dense Janus membranes (JMs) are potential candidates in hypersaline wastewater treatments for membrane distillation (MD). However, dense surface layers generally add obvious membrane mass transfer resistance, limiting its practical application. In this study, a novel dense JM was facilely developed by controlled interfacial polymerization utilizing a phosphonium functional monomer (THPC) on hydrophilic polyvinylidene fluoride (PVDF) substrate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!