Bacterial cellulose (BC) presents significant promise as a biomaterial, boasting unique qualities such as exceptional cellulose purity, robust mechanical strength, heightened crystalline structure, and biodegradability. Several studies have highlighted specific effects, such as the impact of dehydration/rehydration on BC tensile strength, the influence of polymer treatment methods on mechanical properties, the correlation between microorganism type, drying method, and Young's modulus value, and the relationship between culture medium composition, pH, and crystallinity. Drying methods are crucial to the structure, performance, and application of BC films. Research findings indicate that the method used for drying can influence the mechanical properties of BC films, including parameters such as tensile strength, Young's modulus, and water absorption capacity, as well as the micromorphology, crystallinity, and thermal characteristics of the material. Their versatility makes them potential biomaterials applicable in various fields, including thermal and acoustic insulation, owing to their distinct thermal and mechanical attributes. This review delves into the thermal and mechanical behavior of bacterial cellulose aerogels, which are profoundly impacted by their drying mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11276278PMC
http://dx.doi.org/10.3390/gels10070474DOI Listing

Publication Analysis

Top Keywords

thermal mechanical
12
bacterial cellulose
12
drying methods
8
mechanical behavior
8
behavior bacterial
8
tensile strength
8
mechanical properties
8
young's modulus
8
mechanical
6
drying
5

Similar Publications

Temperature dynamics and mechanical properties analysis of carbon fiber epoxy composites radiated by nuclear explosion simulated light source.

Sci Rep

January 2025

Engineering Research Center of Flexible Radiation Protection Technology, Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an, 710048, Shaanxi, China.

The impact of light radiation, a predominant energy release mechanism in nuclear explosions, on material properties is of critical importance. This investigation employed an artificial light source to replicate the effects of nuclear explosion radiation and utilized a physical information neural network (PINN) to examine the temperature evolution and corresponding changes in the mechanical properties of carbon fiber/epoxy composites (CFEC). A light source simulating nuclear explosion's light radiation was built to irradiate the CFEC, then measure the reflection spectrum and temperature of samples.

View Article and Find Full Text PDF

The frozen storage of biopharmaceuticals brings new challenges to the primary packaging material. Due to an increasing demand and the downsides of standard type I glass vials, such as vial breakage, novel vial types for special applications of parenteral drug products have been introduced to the market in the past years. Mechanical stresses due to dimensional changes experienced during freezing and thawing could change the material properties, hence affecting the interaction with the drug product stored in the vial or functionality such as overall integrity.

View Article and Find Full Text PDF

Preparation of anti-shrinkage branched poly (butylene succinate-co-butylene terephthalate)/cellulose nanocrystal foam with excellent degradability and thermal insulation.

Int J Biol Macromol

January 2025

State Key Laboratory of Chemical Engineering, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China. Electronic address:

Branched poly (butylene succinate-co-butylene terephthalate) (BPBST) was synthesized by in-situ polycondensation to enhance the foamability of poly (butylene succinate-co-butylene terephthalate) (PBST) and was blended with cellulose nanocrystals (CNC) to address foam shrinkage. The introduction of 2 wt% CNC increased the crystallization temperature of BPBST from 66.6 °C to 87.

View Article and Find Full Text PDF

Design and Ex Vivo Evaluation of a PCLA Degradable Device To Improve Annulus Fibrosus Repair.

ACS Appl Bio Mater

January 2025

Polymers for Health and Biomaterials, IBMM UMR 5247, CNRS, ENSCM, University of Montpellier, 34090 Montpellier, France.

With a prevalence of over 90% in people over 50, intervertebral disc degeneration (IVDD) is a major health concern. This weakening of the intervertebral discs can lead to herniation, where the nucleus pulpus (NP) leaks through the surrounding Annulus Fibrosus (AF). Considering the limited self-healing capacity of AF tissue, an implant is needed to restore its architecture and function.

View Article and Find Full Text PDF

Decoupling Carrier Dynamics and Energy Transport in Ultrafast Near-Field Nanoscopy.

Nano Lett

January 2025

Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States.

Ultrafast near-field optical nanoscopy has emerged as a powerful platform to characterize low-dimensional materials. While analytical and numerical models have been established to account for photoexcited carrier dynamics, quantitative evaluation of the associated pulsed laser heating remains elusive. Here, we decouple the photocarrier density and temperature increase in near-field nanoscopy by integrating the two-temperature model (TTM) with finite-difference time-domain (FDTD) simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!