A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Whole-Cell Biosensor for Iron Monitoring as a Potential Tool for Safeguarding Biodiversity in Polar Marine Environments. | LitMetric

Iron is a key micronutrient essential for various essential biological processes. As a consequence, alteration in iron concentration in seawater can deeply influence marine biodiversity. In polar marine environments, where environmental conditions are characterized by low temperatures, the role of iron becomes particularly significant. While iron limitation can negatively influence primary production and nutrient cycling, excessive iron concentrations can lead to harmful algal blooms and oxygen depletion. Furthermore, the growth of certain phytoplankton species can be increased in high-iron-content environments, resulting in altered balance in the marine food web and reduced biodiversity. Although many chemical/physical methods are established for inorganic iron quantification, the determination of the bio-available iron in seawater samples is more suitably carried out using marine microorganisms as biosensors. Despite existing challenges, whole-cell biosensors offer other advantages, such as real-time detection, cost-effectiveness, and ease of manipulation, making them promising tools for monitoring environmental iron levels in polar marine ecosystems. In this review, we discuss fundamental biosensor designs and assemblies, arranging host features, transcription factors, reporter proteins, and detection methods. The progress in the genetic manipulation of iron-responsive regulatory and reporter modules is also addressed to the optimization of the biosensor performance, focusing on the improvement of sensitivity and specificity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11277574PMC
http://dx.doi.org/10.3390/md22070299DOI Listing

Publication Analysis

Top Keywords

polar marine
12
iron
9
biodiversity polar
8
marine environments
8
marine
6
whole-cell biosensor
4
biosensor iron
4
iron monitoring
4
monitoring potential
4
potential tool
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!