The triphenylphosphonium (TPP) cation has been widely used as a carrier for mitochondria-targeting molecules. We synthesized two commonly employed targeting systems, namely, ω-triphenylphosphonium fatty acids (group 2) and ω-triphenylphosphonium fatty alcohols (group 3), to assess the impact of the TPP module on the biological efficacy of mitochondria-targeting molecules. We evaluated their fungicidal activities against nine plant pathogenic fungi in comparison to alkyl-1-triphenylphosphonium compounds (group 1). All three compound groups exhibited fungicidal activity and displayed a distinct "cut-off effect", which depended on the length of the carbon chain. Specifically, group compounds showed a cut-off point at C (compound -), while group and compounds exhibited cut-off points at C (compound -) and C (compound -), respectively. Notably, group compounds displayed significantly higher fungicidal activity compared to groups and 3. However, group and compounds showed similar activity to each other, although susceptibility may depend on the pathogen tested. Initial investigations into the mechanism of action of the most active compounds suggested that their fungicidal performance may be primarily attributed to their ability to damage the membrane, as well as uncoupling activity and inhibition of fungal respiration. Our findings suggest that the TPP module used in delivery systems as aliphatic acyl or alkoxyl derivatives with carbon chains length < 10 will contribute negligible fungicidal activity to the TPP-conjugate compared to the effect of high level of accumulation in mitochondria due to its mitochondria-targeting ability. These results provide a foundation for utilizing TPP as a promising carrier in the design and development of more effective mitochondria-targeting drugs or pesticides.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11278366 | PMC |
http://dx.doi.org/10.3390/jof10070450 | DOI Listing |
Chem Biodivers
January 2025
Chuxiong Normal University, Academy of Science and Technology, Chuxiong Normal University, Chuxiong, 675000,China, No. 456 Luchengnan Road, chuxiong, Academy of Science and Technology, 651000, chuxiong, CHINA.
Gray mold disease is caused by B. cinerea, which could severely reduce the production yield and quality of tomatoes. To explore more potential fungicides with new scaffolds for controlling the gray mold disease, ten aldehydes-thiourea derivatives were designed, synthesized and assayed for inhibitory activity against three plant pathogenic fungi.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China.
Thirty-six novel pyrazole-heterocyclic-amide analogues were designed, synthesized, and characterized. The bioassay results showed that most target compounds exhibited good fungicidal activities against , , , , and at 20 μg/mL. Compounds , , , and possessed better fungicidal activities than the commercial fungicide prochloraz against .
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China. Electronic address:
Continuous misuse of difenoconazole (DFZ) results in farmland contamination, posing risks to crops and human health. Salicylic acid (SA) has been shown to enhance plant resistance and reduce pesticide phytotoxicity and accumulation. However, whether SA effectively reduces DFZ phytotoxicity and accumulation and its underlying mechanisms remain poorly understood.
View Article and Find Full Text PDFArch Microbiol
January 2025
Department of Chemistryand Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University Júlio de Mesquita Filho, São José do Rio Preto, SP, Brazil.
Candida is a commensal fungus of clinical interest that commonly lives in oral cavity and intestine but can become an opportunist microrganism and cause severe infections. A serie of 10 aminochalcones were designed and synthetized to obtain compounds anti-Candida with potent and broad-spectrum activity. The most active compound J34 demonstrated excellent in vitro activity against Candida albicans, Candida tropicalis, Candida parapsilosis, Candida glabrata and Candida krusei with minimum inhibitory concentration between 1.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China.
Background: In the realm of plant diseases, those caused by fungi and oomycetes are particularly challenging to manage, resulting in significant economic losses. There exist diverse active substances in natural products and developing them into fungicides holds great significance. At the initial phase of our research, we discovered that Syringa pinnatifolia extract demonstrates broad-spectrum inhibitory activity against phytopathogenic fungi.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!