The prevalence of complications due to the presence of biofilms in dental implant surfaces and their relationship with peri-implant diseases, namely peri-implantitis, remain difficult problems to overcome. The information available about the application of electric current on dental implant biofilms; its parameters, namely current level, voltage and exposure time; and related effects are still not enough to understand which individual mechanisms are caused by this technique, culminating in the decrease or eradication of the biofilm. The purpose of this narrative review, based on a systematic search, is to understand the effect of electric current directly applied to biofilms present in dental implants and which parameters are used. For the systematic search, electronic databases including MEDLINE/PubMed, Scopus, and Web of Science, up to and including November 2023, were searched. Seven studies were included. A 12-item checklist was used to assess their methodological quality. All studies used direct/constant electric current; however, that use was not achieved by the same protocol/set-up. Parameters such as current, voltage, resistance, and actuation time were different in all studies. Monospecies and multi-species biofilm were used in the substrate made of titanium. The results indicate that the use of constant and alternating electric current directly applied to dental implant's surfaces is a promising way to treat problems related to biofilms and peri-implant diseases. Future trials, namely in vivo tests, are necessary to reveal all the potential of this treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11278489 | PMC |
http://dx.doi.org/10.3390/jfb15070197 | DOI Listing |
J Phys Chem Lett
January 2025
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
Electrochemical nitrogen conversion for ammonia (NH) synthesis, driven by renewable electricity, offers a sustainable alternative to the traditional Haber-Bosch process. However, this conversion process remains limited by a low Faradaic efficiency (FE) and NH yield. Although transition metals have been widely studied as catalysts for NH synthesis through effective electron donation/back-donation mechanisms, there are challenges in electrochemical environments, including competitive hydrogen evolution reaction (HER) and catalyst stability issues.
View Article and Find Full Text PDFWaste Manag Res
January 2025
Bohai Rim Energy Research Institute, Northeast Petroleum University, Daqing, Heilongjiang, China.
In this systematic review, advancements in plastic recycling technologies, including mechanical, thermolysis, chemical and biological methods, are examined. Comparisons among recycling technologies have identified current research trends, including a focus on pretreatment technologies for waste materials and the development of new organic chemistry or biological techniques that enable recycling with minimal energy consumption. Existing environmental and economic studies are also compared.
View Article and Find Full Text PDFBioelectromagnetics
January 2025
Seibersdorf Labor GmbH, Seibersdorf, Austria.
The electrical conductivity of human tissues is a major source of uncertainty when modelling the interactions between electromagnetic fields and the human body. The aim of this study is to estimate human tissue conductivities in vivo over the low-frequency range, from 30 Hz to 1 MHz. Noninvasive impedance measurements, medical imaging, and 3D surface scanning were performed on the forearms of ten volunteer test subjects.
View Article and Find Full Text PDFJ Coll Physicians Surg Pak
January 2025
Anti-Quackery Committee, Sindh Healthcare Commission, Karachi, Pakistan.
Fraudulent medical practices remain prevalent globally, fueled by digital platforms spreading false claims. This study analysed 3,327 published studies and 400 grey literature sources, selecting 38 studies and 19 excerpts for detailed examination. It identified 126 distinct quackery techniques and products used throughout history.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States.
Significant hourly variation in the carbon intensity of electricity supplied to wastewater facilities introduces an opportunity to lower emissions by shifting the timing of their energy demand. This shift could be accomplished by storing wastewater, biogas from sludge digestion, or electricity from on-site biogas generation. However, the life cycle emissions and cost implications of these options are not clear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!