Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The loreyi leafworm (Lepidoptera: Noctuidae) is a serious pest of agriculture that causes particular damage to Gramineae crops in Asia, Europe, Australia, Africa, and the Middle East. Low temperature is one of the important environmental factors that limits the survival, distribution, colonization, and abundance of . However, the metabolic synthesis pathways of cold-tolerant substances in and the key genes involved in the regulation under cold stress remain largely unknown. In this study, we sequenced the transcriptomes of three developmental stages (larvae, pupae, and adults) of to discover the molecular mechanisms of their responses to cold stress. In total, sequencing generated 120.64 GB of clean data from 18 samples, of which 19,459 genes and 1740 differentially expressed genes (DEGs) were identified. The enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that many DEGs were mainly enriched in pathways associated with energy metabolism and hormone metabolism. Among these, genes encoding multiple metabolic enzymes, cuticle proteins (CPs), and heat shock proteins (HSPs) were differentially expressed. These results indicate that there are significant differences among the three developmental stages of exposed to cold stress and provide a basis for further studying the molecular mechanisms of cold tolerance in insects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11276649 | PMC |
http://dx.doi.org/10.3390/insects15070554 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!