To date, five species of reddish-brown have been described, but their highly similar body color and other phenotypic traits make accurate taxonomy challenging. To clarify species-level taxonomy and validate potential new species, the cytochrome oxidase subunit I () was used for phylogenetic analysis and the geometric morphometrics of elytron, pronotum, and hind wing were employed to distinguish all reddish-brown species. Phylogenetic results using maximum likelihood and Bayesian analyses of sequences aligned well with the current taxonomy of the species group. Significant KP divergences, with no overlap between intra- and interspecific genetic distances, were obtained in species. The automatic barcode gap discovery (ABGD), assemble species by automatic partitioning (ASAP), and generalized mixed Yule coalescent (GMYC) approaches concurred, dividing the similar species into eight molecular operational taxonomic units (MOTUs). Geometric morphometric analysis using pronotum, elytron, hind wing shape and wing vein patterns also validated the classification of all eight species. By integrating these analytical approaches with morphological evidence, we successfully delineated the reddish-brown species of into eight species with three new species: sp. nov., sp. nov., and sp. nov. Furthermore, we documented the first record of in China. This study underscores the utility of an integrative taxonomy approach in species delimitation within and serves as a reference for the taxonomic revision of other morphologically challenging beetles through integrative taxonomy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11277550 | PMC |
http://dx.doi.org/10.3390/insects15070508 | DOI Listing |
AMB Express
January 2025
Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, P.O. Box 68, Cairo, 11241, Egypt.
The increasing demand for natural alternatives to synthetic fungicides has prompted research into natural products like essential oils for postharvest disease management. This study investigated the antifungal, antioxidant, cytotoxic, and genotoxic potential of essential oil mixtures derived from oregano, rosemary, and mint against Penicillium digitatum, the predominant fungal pathogen causing green mold in orange fruits. P.
View Article and Find Full Text PDFEcohealth
January 2025
Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China.
Chytridiomycosis is a wildlife disease that has caused significant declines in amphibian populations and species extinctions worldwide. Asia, where the causal pathogens Batrachochytrium dendrobatidis (Bd) and B. salamndrivorans (Bsal) originated, has not witnessed mass die-offs.
View Article and Find Full Text PDFMycopathologia
January 2025
Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
This study presents the first high-quality assembled genome of Naganishia uzbekistanensis, derived from a clinical isolate CY11558 obtained from a patient with a postoperative pulmonary infection. This work provides an improved reference assembly for downstream research and diagnosis of infections caused by this species.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India.
Background: Multiple sclerosis (MS) is a chronic autoimmune condition that damages the myelin sheath of neurons in the central nervous system, resulting in compromised nerve transmission and motor impairment. The astrocytopathy is considered one of the prominent etiological factor in the pathophysiology of demyelination in MS. The expression level of ceramide synthase-2 (CS-2) is yet to be established in the pathophysiology of astrocytopathy although the derailed ceramide biosynthetic pathways is well demonstrated in the pathophysiology of demyelination.
View Article and Find Full Text PDFPlanta
January 2025
School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia.
A gene within a single subclade of NCED genes is triggered in response to both, short- and long-term dehydration treatments, in three model dicot species. During dehydration, some plants can rapidly synthesise the stress hormone abscisic acid (ABA) in leaves within 20 min, triggering the closure of stomata and limiting further water loss. This response is associated with significant transcriptional upregulation of Nine-cis-Epoxycarotenoid Dioxygenase (NCED) genes, which encode the enzyme considered to be rate-limiting in ABA biosynthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!