Streamflow Prediction Using Complex Networks.

Entropy (Basel)

Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.

Published: July 2024

The reliable prediction of streamflow is crucial for various water resources, environmental, and ecosystem applications. The current study employs a complex networks-based approach for the prediction of streamflow. The approach consists of three major steps: (1) the formation of a network using streamflow time series; (2) the calculation of the clustering coefficient (CC) as a network measure; and (3) the use of a clustering coefficient-based nearest neighbor search procedure for streamflow prediction. For network construction, each timestep is considered as a node and the existence of link between any node pair is identified based on the difference (distance) between the streamflow values of the nodes. Different distance threshold values are used to identify the critical distance threshold to form the network. The complex networks-based approach is implemented for the prediction of daily streamflow at 142 stations in the contiguous United States. The prediction accuracy is quantified using three statistical measures: correlation coefficient (R), normalized root mean square error (NRMSE), and Nash-Sutcliffe efficiency (NSE). The influence of the number of neighbors on the prediction accuracy is also investigated. The results, obtained with the critical distance threshold, reveal that the clustering coefficients for the 142 stations range from 0.799 to 0.999. Overall, the prediction approach yields reasonably good results for all 142 stations, with R values ranging from 0.05 to 0.99, NRMSE values ranging from 0.1 to 12.3, and the NSE values ranging from -0.89 to 0.99. An attempt is also made to examine the relationship between prediction accuracy and the catchment characteristics/streamflow statistical properties (drainage area, mean flow, coefficient of variation of flow). The results suggest that the prediction accuracy does not have much of a relationship with the drainage area and the mean streamflow values, but with the coefficient of variation of flow. The outcomes from this study are certainly promising regarding the application of complex networks-based concepts for the prediction of streamflow (and other hydrologic) time series.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11276579PMC
http://dx.doi.org/10.3390/e26070609DOI Listing

Publication Analysis

Top Keywords

prediction accuracy
16
prediction streamflow
12
complex networks-based
12
distance threshold
12
142 stations
12
values ranging
12
prediction
10
streamflow
9
streamflow prediction
8
networks-based approach
8

Similar Publications

Study on jet dynamic impact performance under the influence of standoff.

Sci Rep

December 2024

School of Mechanical and Electrical Engineering, North University of China, Taiyuan, 030051, Shanxi, China.

Due to the sensitivity of the shaped charge jet to standoff and the complexity of its impact under lateral disturbances, this study aims to investigate the dynamic impact evolution of the jet influenced by standoff and lateral disturbances. A finite element model for the dynamic impact of shaped charge jets was established. Dynamic impact experiments were designed and conducted to validate the effectiveness of the numerical simulations.

View Article and Find Full Text PDF

Moving beyond word frequency based on tally counting: AI-generated familiarity estimates of words and phrases are an interesting additional index of language knowledge.

Behav Res Methods

December 2024

ETSI de Telecomunicación, Universidad Politécnica de Madrid, Avenida Complutense, 30, 28040, Madrid, Spain.

This study investigates the potential of large language models (LLMs) to estimate the familiarity of words and multi-word expressions (MWEs). We validated LLM estimates for isolated words using existing human familiarity ratings and found strong correlations. LLM familiarity estimates performed even better in predicting lexical decision and naming performance in megastudies than the best available word frequency measures.

View Article and Find Full Text PDF

This paper presents a slot antenna integrated with a split ring resonator (SRR) and feed line, designed to achieve a high Q-factor while maximizing channel capacity utilization. By incorporating a lens into the dielectric resonator antenna (DRA), we enhance both bandwidth and directivity, with the dielectric material's permittivity serving as a key control parameter for radiation characteristics. We explore water and ethanol as controllable dielectrics within the terahertz (THz) frequency range (0.

View Article and Find Full Text PDF

With the accelerated urbanization and economic development in Northwest China, the efficiency of urban wastewater treatment and the importance of water quality management have become increasingly significant. This work aims to explore urban wastewater treatment and carbon reduction mechanisms in Northwest China to alleviate water resource pressure. By utilizing online monitoring data from pilot systems, it conducts an in-depth analysis of the impacts of different wastewater treatment processes on water quality parameters.

View Article and Find Full Text PDF

Failure to predict stroke promptly may lead to delayed treatment, causing severe consequences like permanent neurological damage or death. Early detection using deep learning (DL) and machine learning (ML) models can enhance patient outcomes and mitigate the long-term effects of strokes. The aim of this study is to compare these models, exploring their efficacy in predicting stroke.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!