A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Data-Driven Identification of Stroke through Machine Learning Applied to Complexity Metrics in Multimodal Electromyography and Kinematics. | LitMetric

A stroke represents a significant medical condition characterized by the sudden interruption of blood flow to the brain, leading to cellular damage or death. The impact of stroke on individuals can vary from mild impairments to severe disability. Treatment for stroke often focuses on gait rehabilitation. Notably, assessing muscle activation and kinematics patterns using electromyography (EMG) and stereophotogrammetry, respectively, during walking can provide information regarding pathological gait conditions. The concurrent measurement of EMG and kinematics can help in understanding disfunction in the contribution of specific muscles to different phases of gait. To this aim, complexity metrics (e.g., sample entropy; approximate entropy; spectral entropy) applied to EMG and kinematics have been demonstrated to be effective in identifying abnormal conditions. Moreover, the conditional entropy between EMG and kinematics can identify the relationship between gait data and muscle activation patterns. This study aims to utilize several machine learning classifiers to distinguish individuals with stroke from healthy controls based on kinematics and EMG complexity measures. The cubic support vector machine applied to EMG metrics delivered the best classification results reaching 99.85% of accuracy. This method could assist clinicians in monitoring the recovery of motor impairments for stroke patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11276346PMC
http://dx.doi.org/10.3390/e26070578DOI Listing

Publication Analysis

Top Keywords

emg kinematics
12
machine learning
8
complexity metrics
8
muscle activation
8
applied emg
8
stroke
6
kinematics
6
emg
6
data-driven identification
4
identification stroke
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!