Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Reducing resistance to surface friction is challenging in the field of engineering. Natural biological systems have evolved unique functional surfaces or special physiological functions to adapt to their complex environments over centuries. Among these biological wonders, fish, one of the oldest in the vertebrate group, have garnered attention due to their exceptional fluid dynamics capabilities. Fish skin has inspired innovation in reducing surface friction due to its unique structures and material properties. Herein, drawing inspiration from the unique properties of fish scales, a periodic array of fish scales was fabricated by laser ablation on a polished aluminum template. The morphology of the biomimetic fish scale surface was characterized using scanning electron microscopy and a white-light interfering profilometer. Drag reduction performance was measured in a closed circulating water tunnel. The maximum drag reduction was 10.26% at a Reynolds number of 39,532, and the drag reduction performance gradually decreased with an increase in the distance between fish scales. The mechanism of the biomimetic drag reduction surface was analyzed using computational fluid dynamics. Streamwise vortices were generated at the valley of the biomimetic fish scale, replacing sliding friction with rolling friction. These results are expected to provide a foundation for in-depth analysis of the hydrodynamic performance of fish and serve as new inspiration for drag reduction and antifouling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11274741 | PMC |
http://dx.doi.org/10.3390/biomimetics9070415 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!