A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

3D Spongin Scaffolds as Templates for Electro-Assisted Deposition of Selected Iron Oxides. | LitMetric

The skeletons of marine sponges are ancient biocomposite structures in which mineral phases are formed on 3D organic matrices. In addition to calcium- and silicate-containing biominerals, iron ions play an active role in skeleton formation in some species of bath sponges in the marine environment, which is a result of the biocorrosion of the metal structures on which these sponges settle. The interaction between iron ions and biopolymer spongin has motivated the development of selected extreme biomimetics approaches with the aim of creating new functional composites to use in environmental remediation and as adsorbents for heavy metals. In this study, for the first time, microporous 3D spongin scaffolds isolated from the cultivated marine bath sponge were used for electro-assisted deposition of iron oxides such as goethite [α-FeO(OH)] and lepidocrocite [γ-FeO(OH)]. The obtained iron oxide phases were characterized with the use of scanning electron microscopy, FTIR, and X-ray diffraction. In addition, mechanisms of electro-assisted deposition of iron oxides on the surface of spongin, as a sustainable biomaterial, are proposed and discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11274396PMC
http://dx.doi.org/10.3390/biomimetics9070387DOI Listing

Publication Analysis

Top Keywords

electro-assisted deposition
12
iron oxides
12
spongin scaffolds
8
iron ions
8
deposition iron
8
iron
6
spongin
4
scaffolds templates
4
templates electro-assisted
4
deposition selected
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!