The KRAS mutation stands out as one of the most influential oncogenic mutations, which directly regulates the hallmark features of cancer and interacts with other cancer-causing driver mutations. However, there remains a lack of precise information on their cooccurrence with mutated variants of KRAS and any correlations between KRAS and other driver mutations. To enquire about this issue, we delved into cBioPortal, TCGA, UALCAN, and Uniport studies. We aimed to unravel the complexity of and its relationships with other driver mutations. We noticed that G12D and G12V are the prevalent mutated variants of KRAS and coexist with the TP53 mutation in PAAD and CRAD, while G12C and G12V coexist with LUAD. We also noticed similar observations in the case of PIK3CA and APC mutations in CRAD. At the transcript level, a positive correlation exists between and and between and in CRAD. The existence of the co-mutation of KRAS and other driver mutations could influence the signaling pathway in the neoplastic transformation. Moreover, it has immense prognostic and predictive implications, which could help in better therapeutic management to treat cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11274496 | PMC |
http://dx.doi.org/10.3390/cells13141221 | DOI Listing |
J Pathol
January 2025
Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, MD, USA.
Rhabdomyosarcoma (RMS) is a family of phenotypically myogenic paediatric cancers consisting of two major subtypes: fusion-positive (FP) RMS, most commonly involving the PAX3::FOXO1 fusion gene, formed by the fusion of paired box 3 (PAX3) and forkhead box O1 (FOXO1) genes, and fusion-negative (FN) RMS, lacking these gene fusions. In humans, DNA methylation patterns distinguish these two subtypes as well as mutation-associated subsets within these subtypes. To investigate the biological factors responsible for these methylation differences, we profiled DNA methylation in RMS tumours derived from genetically engineered mouse models (GEMMs) in which various driver mutations were introduced into different myogenic lineages.
View Article and Find Full Text PDFBiomed Rep
March 2025
Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece.
The advent of personalized and precision medicine has revolutionized oncology and treatment of gynecological cancer. These innovative approaches tailor treatments to individual patient profiles beyond genetic markers considering environmental and lifestyle factors, thereby optimizing therapeutic efficacy and minimizing adverse effects. Precision medicine uses advanced genomic technologies such as next-generation sequencing to perform comprehensive tumor profiling.
View Article and Find Full Text PDFNat Rev Cancer
January 2025
Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA.
Acquisition of genomic mutations enables cancer cells to gain fitness advantages under selective pressure and, ultimately, leads to oncogenic transformation. Interestingly, driver mutations, even within the same gene, can yield distinct phenotypes and clinical outcomes, necessitating a mutation-focused approach. Conversely, cellular functions are governed by molecular machines and signalling networks that are mostly controlled by protein-protein interactions (PPIs).
View Article and Find Full Text PDFCancer Treat Res Commun
January 2025
Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region, Hong Kong.
Unresectable stage III non-small cell lung cancer (NSCLC) carries a poor prognosis. The PACIFIC trial established consolidation durvalumab after chemoradiation as a standard treatment; however, its efficacy in patients with driver mutations remains uncertain. This retrospective cohort study analyzed data from three oncology centers in Hong Kong, covering the period from January 2019 to December 2022.
View Article and Find Full Text PDFCancer Res Commun
January 2025
Zentalis Pharmaceuticals, Inc, San Diego, CA, United States.
KRAS is a potent oncogenic driver which results in downstream hyperactivation of MAPK signaling, while simultaneously increasing replication stress (RS) and accumulation of DNA damage. KRASG12C mutations are common and targetable alterations. Therapeutic inhibition of KRASG12C and eventual resistance to these inhibitors are also known to drive RS and DNA damage through adaptive mechanisms that maintain addiction to high MAPK signaling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!