Alder-Ene Reaction-Mediated Suppression of Tin(II) Oxidation for Efficient Tin-Lead Perovskite Solar Cells.

Angew Chem Int Ed Engl

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.

Published: October 2024

Despite numerous studies have reported the inhibition of tin (II) oxidation in mixed tin-lead halide perovskite, there remains a dearth of mechanistic information regarding how tin (II) undergoes oxidation in the precursor solution, particularly in terms of the involvement of DMSO. We here take advantage of density functional theory (DFT) to uncover that SnI can coordinate with DMSO and react with singlet oxygen, resulting in the generation of Sn (IV). Moreover, our DFT simulations reveal that benzaldehyde oxime (BZHO) competes with SnI in reacting with oxygen through the Alder-ene reaction, hence effectively restraining the oxidation of tin (II), which is further verified by several experimental characterizations. Besides, the introduction of BZHO has also regulated the crystallization of the perovskite film and modified the electronic structure of the perovskite surface. As a result, the perovskite solar cells with the addition of BZHO demonstrate superior performance and operational stability, retaining 82 % of the initial PCE under continuous 1-sun illumination for 800 hours. Furthermore, the efficiency of all-perovskite tandem solar cells treated with BZHO reached 26.76 %. Therefore, this work presents a promising strategy for designing high-performance and stable all-perovskite tandem solar cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202409072DOI Listing

Publication Analysis

Top Keywords

solar cells
16
perovskite solar
8
all-perovskite tandem
8
tandem solar
8
perovskite
5
alder-ene reaction-mediated
4
reaction-mediated suppression
4
suppression tinii
4
oxidation
4
tinii oxidation
4

Similar Publications

Emerging wearable devices would benefit from integrating ductile photovoltaic light-harvesting power sources. In this work, we report a small-molecule acceptor (SMA), also known as a non-fullerene acceptor (NFA), designed for stretchable organic solar cell (-OSC) blends with large mechanical compliance and performance. Blends of the organosilane-functionalized SMA BTP-Si4 with the polymer donor PNTB6-Cl achieved a power conversion efficiency (PCE) of >16% and ultimate strain (ε) of >95%.

View Article and Find Full Text PDF

Why SbSe/CdS Interface Produces Higher Power Conversion Efficiency.

J Phys Chem Lett

January 2025

College of Physics Science and Technology, Hebei University, Baoding 071002, China.

Developing the Cd-free electron transport layer (ETL) is a crucial subject in the field of antimony selenide (SbSe) solar cells. At present, the power conversion efficiency (PCE) of the Cd-free SbSe solar cell is still substantially lower than that of CdS-based devices. It is significant to reveal the electron transfer features in SbSe/CdS heterojunction and SbSe/Cd-free ETL heterojunction for development of a Cd-free SbSe solar cell with high PCE.

View Article and Find Full Text PDF

Improved Conductivity of 2D Perovskite Capping Layer for Realizing High-Performance 3D/2D Heterostructured Hole Transport Layer-Free Perovskite Photovoltaics.

ACS Nano

January 2025

Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.

Perovskite solar cells (PSCs) have emerged as low-cost photovoltaic representatives. Constructing three-dimensional (3D)/two-dimensional (2D) perovskite heterostructures has been shown to effectively enhance the efficiency and stability of PSCs. However, further enhancement of device performance is still largely limited by inferior conductivity of the 2D perovskite capping layer and its mismatched energy level with the 3D perovskite layer.

View Article and Find Full Text PDF

Long-term dynamics of placozoan culture: emerging models for population and space biology.

Front Cell Dev Biol

January 2025

Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, United States.

As the simplest free-living animal, (Placozoa) is emerging as a powerful paradigm to decipher molecular and cellular bases of behavior, enabling integrative studies at all levels of biological organization in the context of metazoan evolution and parallel origins of neural organization. However, the progress in this direction also depends on the ability to maintain a long-term culture of placozoans. Here, we report the dynamic of cultures over 11 years of observations from a starting clonal line, including 7 years of culturing under antibiotic (ampicillin) treatment.

View Article and Find Full Text PDF

Advances in integrated power supplies for self-powered bioelectronic devices.

Nanoscale

January 2025

Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 117585, Singapore.

Bioelectronic devices with medical functions have attracted widespread attention in recent years. Power supplies are crucial components in these devices, which ensure their stable operation. Biomedical devices that utilize external power supplies and extended electrical wires limit patient mobility and increase the risk of discomfort and infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!