Using ALS to understand profilin 1's diverse roles in cellular physiology.

Cytoskeleton (Hoboken)

Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA.

Published: July 2024

Profilin is an actin monomer-binding protein whose role in actin polymerization has been studied for nearly 50 years. While its principal biochemical features are now well understood, many questions remain about how profilin controls diverse processes within the cell. Dysregulation of profilin has been implicated in a broad range of human diseases, including neurodegeneration, inflammatory disorders, cardiac disease, and cancer. For example, mutations in the profilin 1 gene (PFN1) can cause amyotrophic lateral sclerosis (ALS), although the precise mechanisms that drive neurodegeneration remain unclear. While initial work suggested proteostasis and actin cytoskeleton defects as the main pathological pathways, multiple novel functions for PFN1 have since been discovered that may also contribute to ALS, including the regulation of nucleocytoplasmic transport, stress granules, mitochondria, and microtubules. Here, we will review these newly discovered roles for PFN1, speculate on their contribution to ALS, and discuss how defects in actin can contribute to these processes. By understanding profilin 1's involvement in ALS pathogenesis, we hope to gain insight into this functionally complex protein with significant influence over cellular physiology.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cm.21896DOI Listing

Publication Analysis

Top Keywords

profilin 1's
8
cellular physiology
8
profilin
6
als
5
als understand
4
understand profilin
4
1's diverse
4
diverse roles
4
roles cellular
4
physiology profilin
4

Similar Publications

Profilin is an actin monomer-binding protein whose role in actin polymerization has been studied for nearly 50 years. While its principal biochemical features are now well understood, many questions remain about how profilin controls diverse processes within the cell. Dysregulation of profilin has been implicated in a broad range of human diseases, including neurodegeneration, inflammatory disorders, cardiac disease, and cancer.

View Article and Find Full Text PDF

The mechanism of profilin-promoted actin polymerization has been systematically reinvestigated. Rates of barbed-end elongation onto Spectrin.4.

View Article and Find Full Text PDF

Capping of the barbed ends of actin filaments by a high-affinity profilin-actin complex.

Cell Motil Cytoskeleton

September 1997

Department of Medicine, Cooper Hospital/University Medical Center, UMDNJ/Robert Wood Johnson Medical School, Camden, USA.

Profilin, a ubiquitous 12 to 15-kDa protein, serves many functions, including sequestering monomeric actin, accelerating nucleotide exchange on actin monomers, decreasing the critical concentration of the barbed end of actin filaments, and promoting actin polymerization when barbed ends are free. Most previous studies have focused on profilin itself rather than its complex with actin. A high-affinity profilin-actin complex (here called profilactin) can be isolated from a poly-(L)-proline (PLP) column by sequential elution with 3 M and 7 M urea.

View Article and Find Full Text PDF

We expressed in Escherichia coli the vaccinia virus gene for a protein similar to vertebrate profilins, purified the recombinant viral profilin, and characterized its interactions with actin and polyphosphoinositides. Compared with cellular profilins, this viral profilin has a low affinity (Kd > or = 35 microM) for human platelet actin monomers, a weak effect on the exchange of the nucleotide bound to the actin, and no detectable affinity for poly(L-proline). Vaccinia profilin binds to phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-monophosphate in micelles and large unilamellar vesicles, but not to phosphatidylserine or phosphatidylcholine.

View Article and Find Full Text PDF

Interaction of profilin with G-actin and poly(L-proline).

Biochemistry

July 1994

Laboratoire d'Enzymologie, CNRS, Gif-sur-Yvette, France.

The interaction of bovine spleen profilin with ATP- and ADP-G-actin and poly(L-proline) has been studied by spectrofluorimetry, analytical ultracentrifugation, and rapid kinetics in low ionic strength buffer. Profilin binding to G-actin is accompanied by a large quenching of tryptophan fluorescence, allowing the measurement of an equilibrium dissociation constant of 0.1-0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!