Background And Aims: Histopathological diagnosis is the gold standard in many acquired inflammatory, infiltrative and amyloid based peripheral nerve diseases and a sensory nerve biopsy of sural or superficial peroneal nerve is favoured where a biopsy is deemed necessary. The ability to determine nerve pathology by high-resolution imaging techniques resolving anatomy and imaging characteristics might improve diagnosis and obviate the need for biopsy in some. The sural nerve is anatomically variable and occasionally adjacent vessels can be sent for analysis in error. Knowing the exact position and relationships of the nerve prior to surgery could be clinically useful and thus reliably resolving nerve position has some utility.

Methods: 7T images of eight healthy volunteers' (HV) right ankle were acquired in a pilot study using a double-echo in steady-state sequence for high-resolution anatomy images. Magnetic Transfer Ratio images were acquired of the same area. Systematic scoring of the sural, tibial and deep peroneal nerve around the surgical landmark 7 cm from the lateral malleolus was performed (number of fascicles, area in voxels and mm, diameter and location relative to nearby vessels and muscles).

Results: The sural and tibial nerves were visualised in the high-resolution double-echo in steady-state (DESS) image in all HV. The deep peroneal nerve was not always visualised at level of interest. The MTR values were tightly grouped except in the sural nerve where the nerve was not visualised in two HV. The sural nerve location was found to be variable (e.g., lateral or medial to, or crossing behind, or found positioned directly posterior to the saphenous vein).

Interpretation: High-resolution high-field images have excellent visualisation of the sural nerve and would give surgeons prior knowledge of the position before surgery. Basic imaging characteristics of the sural nerve can be acquired, but more detailed imaging characteristics are not easily evaluable in the very small sural and further developments and specific studies are required for any diagnostic utility at 7T.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jns.12645DOI Listing

Publication Analysis

Top Keywords

sural nerve
24
nerve
15
peroneal nerve
12
imaging characteristics
12
sural
10
visualisation sural
8
biopsy sural
8
double-echo steady-state
8
sural tibial
8
deep peroneal
8

Similar Publications

Background: An all-inside endoscopic flexor hallucis longus (FHL) tendon transfer is indicated for the treatment of chronic, full-thickness Achilles tendon defects. The aim of this procedure is to restore function of the gastrocnemius-soleus complex while avoiding the wound complications associated with open procedures.

Description: This procedure can be performed through 2 endoscopic portals, a posteromedial portal (the working portal) and a posterolateral portal (the visualization portal).

View Article and Find Full Text PDF

Background/objectives: Lower limb cutaneous reflex amplitudes can modulate across gait, which helps humans adjust rhythmic motor outputs to maintain balance in an ever-changing environment. Preliminary evidence suggests people who suffer from repetitive ankle sprains and residual feelings of giving way demonstrate altered cutaneous reflex patterns in the gastrocnemius. However, before cutaneous reflex assessment can be implemented as a clinical outcome measure, there is a need to substantiate these early findings by measuring reflex amplitudes across longer latency periods and exploring the variability of reflexes within each subject.

View Article and Find Full Text PDF

Introduction And Importance: Fractures of ossified Achilles tendons are rare and often associated with repetitive jumping and sprinting in young athletes. Although the exact cause of Achilles tendon ossification is unclear, prior trauma and surgery are common contributing factors.

Case Presentation: A 47-year-old male recreational athlete experienced acute pain in his right heel after a football game.

View Article and Find Full Text PDF

The plantaris muscle is spindle-shaped in the posterior compartment of the leg. It is distinguished for its small muscle belly and an exceptionally long tendon. It presents with great variability in its origin and insertion when present.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!