A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecule Engineering Metal-Organic Framework-Based Organic Photoelectrochemical Transistor Sensor for Ultrasensitive Bilirubin Detection. | LitMetric

The functionalization of metal-organic frameworks (MOFs) with organic small molecules by in situ postsynthetic modification has garnered considerable attention. However, the precise engineering of recognition sites using this method remains rarely explored in optically controlled bioelectronics. Herein, employing the Schiff base reaction to embed the small molecule (THBA) into a Zr-MOF, we fabricated a hydroxyl-rich MOF on the surface of titanium dioxide nanorod arrays (U6H@TiO NRs) to develop light-sensitive gate electrodes with tailored recognition capabilities. The U6H@TiO NR gate electrodes were integrated into organic photoelectrochemical transistor (OPECT) sensing systems to tailor a sensitive device for bilirubin (I-Bil) detection. In the presence of I-Bil, coordination effects, hydrogen bonding, and π-π interactions facilitated strong binding between U6H@TiO NRs and the target I-Bil. The electron-donating property of I-Bil influenced the gate voltage, enabling precise control of the channel status and modulation of the channel current. The OPECT device exhibited exceptional analytical performance toward I-Bil with wide linearity ranging from 1 × 10 to 1 × 10 M and a low limit detection of 0.022 fM. Leveraging the versatility of small molecules for boosting the functionalization of materials, this work demonstrates the great potential of the small molecule family for OPECT bioanalysis and holds promise for the advancement of OPECT sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c01789DOI Listing

Publication Analysis

Top Keywords

organic photoelectrochemical
8
photoelectrochemical transistor
8
small molecules
8
small molecule
8
u6h@tio nrs
8
gate electrodes
8
i-bil
5
molecule engineering
4
engineering metal-organic
4
metal-organic framework-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!